High performance GISAXS Alexander Hexemer

Early Career Award Program

CAMERA

Center of Applied Mathematics for Energy Research Applications camera.lbl.gov

Beamline 7.3.3 SAXS/WAXS/GISAXS

POWERED BY

- Users are asking for faster scans, but are not prepared for the consequences: they are overwhelmed by data rates/volumes
- Most don't have the background to use high performance computers
- SPOT Suite allows users to take advantage of high performance computers, to overcome their data problems

POWERED BY

spot.nersc.gov

Results for MolName

Interest of the series of the

ew States: Load Custom State o contributing states.

Note, these will take a few minutes to load.

Quantitative GISAXS modeling needs

Long-range ordering of block copolymers for dense storage media (Russell, UMass Amherst, Xu, UCB) MSD, A. Hexemer LBNL)

Nanoparticle/polymer composites for solar cells (Segalman, UCB/MSD & Urban, TMF)

Electrochromic windows (Milliron, TMF)

Battery electrolytes (Balsara, UCB/MSD/EETD)

20 nm

OPV BHJ materials

(McGehee, Stanford; Toney, SSRL/ SLAC; Gomez, PSU; Kline, NIST; Liu, TMF; Ade, NCSU; Kramer, UCSB; Russell, UMass Amherst; Amassian, KAUST, A. Hexemer LBNL)

Lithographic patterning (Soles, NIST; Ocko, BNL)

Self-assembly of nanoparticles in block copolymer thin films (Xu, UCB/MSD)

Composite membranes for artificial photosynthesis (Segalman, UCB/MSD)

Virus nanofiber tissue engineering materials (Lee UCB/PBD)

Block copolymer self-assembly

(Kramer, UCSB; Russell, UMass Amherst; Xu, UCB/ MSD)

HIPGISAXS <u>camera.lbl.gov</u> and http://saxs-waxs-gpu2.lbl.gov

beta version online (slow)

Some Simple Block Copolymer structures

Computed GISAXS images for a "fingerprint" Si grating sample at incident angle $a_i = 0.15^{\circ}$

(b) Simulated GISAXS pattern for a rectangular model of the grating cross section with width and height ranges of nm and nm, respectively. (c) Simulated GISAXS pattern (*left*) using a shape with a trapezoidal cross section.

Si grating pattern (Cont'd)

e = truncovr	Shape	id	parameters
am={ type="heig" Box		box	"xsize", "ysize", "height"
am={ type="widt Cylinder		cylinder	"radius", "height"
am={ type="leng Sphere		sphere	"radius"
am={ type="base Truncated]	pyramid	truncpyr	"xsize", "ysize", "height", "baseangle"
Truncated of	cone	trunccone	"radius". "height", "baseangle"
er = { 3-fold prism	1	prism3	"edge", "height"
= "substr", # 6-fold prism	1	prism6	"edge", "height"
r = -1 , # spe Sawtooth ()	prism along x)	sawtooth	"xsize", "ysize", "height", "baseangle"

[1] Xiaodan Gu, Zuwei Liu, Ilja Gunkel, S. T. Chourou, Sung Woo Hong, Deirdre L. Olynick, and Thomas P. Russell. Advanced Materials (2012)

Si grating pattern (Cont'd)

```
structure = {
key = "st1",
grain = {
shape:key = "s1", # key of the relevant shape
refindex = { delta = 4.88e-06, beta = 7.37e-08 }, # refractive index parameters of grain
layer:key = "", # key of the relevant layer
                                                                             [1]
lattice = { type="cubic" } , # lattice forming grain
scaling = 43, # scaling factor for lattice vectors
repetition = [ 1 8 1 ] # shape repetitions in x, y and z
},
ensemble = {
maxgrains = [ 20 20 1 ], # maximum number of grains along x, y and z
distribution = "random", # spatial domain distr. in irrad. Volume (see list)
orientations = {
stat="range", # domain orientation distr. (see list)
rot1={ axis="x", angles=[ -10 10 ] }, # first rotation to apply to domain
rot2={ axis="z", angles=[ 0 360 ] } # second rotation to apply to domain
}
}
3,
```

[1] Xiaodan Gu, Zuwei Liu, Ilja Gunkel, S. T. Chourou, Sung Woo Hong, Deirdre L. Olynick, and Thomas P. Russell. Advanced Materials (2012)

Hexagonally packed spherical nanoparticle assemblies in a block copolymer lamellar film.

incident angle $\alpha_i = 0.12^\circ$ and 14 layers.

Slicing: Au nanopart. assemblies in PS-b-P4VP thin films

```
hipGisaxsInput = {
shape = {
key = "s1", # a unique key to identify this shape in this file
name = "sphere" , # code name of the shape (see list)
param={ type="radius", min=6.0, max=6.2, stat="gaussian", p1=6.1, p2=0.2, nvalues=10 }
},
layer = {
key = "substr", # special key for case of the substrate layer infinite in lower half space
order = -1 , # special order code for the substrate layer
refindex = { delta=4.88e-06, beta=7.37e-08 } # Si layer
},
layer = {key = "11",
                                                                                      S_1(n_1)
order = 1 ,
thickness=10,
                                                                                      S_2(n_2)
refindex = { delta=4.87e-06, beta=4.89e-09 } # P4VP layer
},
layer = {key = "12",
                                                                                       S_{3}(n_{1})
order = 2 ,
thickness=12,
                                                                                      S_4(n_2)
refindex = { delta=2.48e-06, beta=2.25e-09 } # PS layer
                                                                                      S_{5}(n_{1})
},
layer = {key = "13",
                                                                                     NJ
order = 3 ,
thickness=10,
refindex = { delta=4.87e-06, beta=4.89e-09 } # P4VP layer
},
layer = {key = "14",
order = 4 ,
thickness=12,
refindex = { delta=2.48e-06, beta=2.25e-09 } # PS layer
},
```

Slicing: Au nanopart. assemblies in PS-b-P4VP thin films (Cont'd)

instrumentation = {# there is one set of configuration; the elements do not need to appear together scattering = {

```
expt = "gisaxs",
alphai ={ min=0.2 }, # incidence angles
photon ={ value=10000, unit="ev" }, # photon energy
},
},
computation = {
method="dwba", # theorical approach (see list)
nslices = 5
}
        2.2 HipGISAXS (slicing)
                                            Experiment [1]
}
          2
         1.8
        1.6
        1.4
     [1.mu]<sup>2</sup>b
         1.2
          1
        0.8
        0.6
        0.4
        0.2
                   -1.5
                        -1
                             -0.5
               -2
                                 q<sub>par</sub>[nm<sup>-1</sup>]
```


[1] Joseph Kao, et al. Nano Lett., 12:2610-2618 (2012)

Electron energy loss tomography on OPV

Kyoto University/Ed Kramer Group

Z

Form factor

 $F(q) = \int_{v} e^{i q \cdot r} d^3 r$

$$\begin{split} F(q) &= -\frac{1}{q^2} \int_s \frac{\partial e^{i\,q\cdot r}}{\partial n} d^2 r \quad \text{Green' theorem} \\ &\approx -\frac{i}{q^2} \sum_{t=1}^{NTr} q_{nt} \vec{q} e^{i\vec{q}\cdot\vec{r_t}} s_t \end{split}$$

do what we can analytical

Low resolution: 40 triangles

High resolution: 1200 triangles

Analytical

... More complex morphologies

Actual sample

www.lbl.gov

Generated discrete shape model

Electron energy loss tomography on OPV

Kyoto University

Z

Custom shape: OPV sample

(a)

```
hipGisaxsInput = {
shape = {
key = "s1", # a unique key to identify this shape in this file
name = "opv.hdf5", # code name of the shape (see list)
},
layer = {
key = "substr", # special key for case of the substrate layer infinite in lower half space
order = -1, # special order code for the substrate layer
refindex = { delta=4.88e-06, beta=7.37e-08 }
7
layer = {
key = "11", # a unique key
order = 1, # order of this layer (top = 1 to bottom);
thickness = 800, # layer thickness in nm
refindex = { delta = 4.8e-06, beta = 4.2e-08 } # layer refractive index parameters
},
```

GISAXS from sample set

GISAXS simulation from tomography set

MacPyMQL

COMPND 6 MOL_ID: 2;	Reset Zoom Draw Ray Rock
COMPND 7 MOLECULE: CR2/CD121/C3D/EPSTEIN-BARR VIRUS RECEPTOR; COMPND 8 CHAIN: B, C; COMPND 9 FRAGMENT: SEQUENCE DATABASE RESIDUES 21-153	Unpick Hide Sele Get View
ObjectMolecule: Read crystal symmetry information. Symmetry: Found 18 symmetry operators. CmdLoad: "/Users/alexander hexemer/Downloads/pdblghg.ent" loaded as "pdblghg".	I< < Stop Play > >1 MClear

000

MacryMoL			
COMPND 5 MUTATION: YES; COMPND 6 MOL ID: 2:	Reset Zoom Draw Ray Rock		
COMPND 7 MOLECULE: CR2/CD121/C3D/EPSTEIN-BARR VIRUS RECEPTOR;			
COMPND 8 CHAIN: B, C; COMPND 9 FRAGMENT: SEQUENCE DATABASE RESIDUES 21-153	Unpick Hide Sele Get View		
ObjectMolecule: Read secondary structure assignments. ObjectMolecule: Read crystal symmetry information.	I< < Stop Play > > MClear		
Symmetry: Found 18 symmetry operators. CmdLoad: "/Users/alexander_hexemer/Downloads/pdblghq.ent" loaded as "pdblghq".			

PyMOL>

Custom shape: OPV sample

(a)

```
hipGisaxsInput = {
shape = {
key = "s1", # a unique key to identify this shape in this file
name = "opv.hdf5", # code name of the shape (see list)
},
layer = {
key = "substr", # special key for case of the substrate layer infinite in lower half space
order = -1, # special order code for the substrate layer
refindex = { delta=4.88e-06, beta=7.37e-08 }
7
layer = {
key = "11", # a unique key
order = 1, # order of this layer (top = 1 to bottom);
thickness = 800, # layer thickness in nm
refindex = { delta = 4.8e-06, beta = 4.2e-08 } # layer refractive index parameters
},
```

Single protein single orientation inside homogeneous membrane

Single protein radial averaged orientation inside homogeneous membrane

Many frames datasets

Frame Assembly

3d volume rendering for many frame data sets

Fitting Data

Parameter Fitting Approach Let X be the vector of (continuous) sample parameters $I(q_{u}, k_{z}^{i}, k_{z}^{f}; \vec{X})$ is the computed scattered intensity for sample parameters \dot{X} 1D Relative error w.r.t. the experimental intensity at k_z^{f} $\epsilon(k_z^i, k_{z0}^f, \vec{X}) = \left| \int \left| \frac{I(q_y, k_z^i, k_{z0}^f; \vec{X}) - I_{exp}(q_y, k_z^i, k_{z0}^f)}{I_{exp}(q_y, k_z^i, k_{z0}^f)} \right|^2 dq_y \right|^{\frac{1}{2}}$ Solve: $\vec{X}_{cv}(k_z^i, k_{z0}^f) = \operatorname{argmin}\{\epsilon(k_z^i, k_{z0}^f, \vec{X})\}$ Spheres with Size Distribution: Spheres in a Cubic Lattice: $(x_1, x_2) = (R, a)$ $(x_1, x_2) = (R, V)$ avg. rad. std. dev. Nattice cst. radius $\epsilon(k_z^i,k_{z0}^f,\vec{X})$ $\epsilon(k_z^i, k_{z0}^f, \vec{X})$ x_2 **Error function locally** "smooth", however, multiple nearby local minima for periodic lattice. \mathcal{X}_1

 x_2

Fitting of a cylinder with different initial condition

1

h [nm]

Brute force

Particle Swarm Optimization

The Common PSO Algorithm

test fit up to 10 parameters

$$v_i(k+1) = \phi(k)v_i(k) + \alpha_1 \left[\gamma_{1i}(p_i - x_i(k))\right] + \alpha_2 \left[\gamma_{2i}(G - x_i(k))\right]$$

 $\Box \phi$ - Inertia function $\Box \alpha 1,2$ - Acceleration constants

Generation

Generation

HipGISAXS CNERSC

powered by

and pea					
Key:	\$1	Origin vector:	0 0 0		
Name:	cylinder ‡	Z-tilt:	0		
		XY-rotation:	0		
Parameter List	5. · · · · · · · · · · · · · · · · · · ·				
Parameter Detail	5:	1			
Type:	radius	Statistic:	Statistic: gaussian +		
Minimum:	20	Mean:	100		
Maximum:	120	Std deviation:	10		
Number of values:	50				
Parameter Detail	s:	-			
Type:	height	Statistic:	single \$		
Minimum:	150	Mean:	0		
Maximum:	0	Std deviation:	0		
Number of values:	1				
Lavers					
Key:	11	Refractive index:	Delta: 9.107e-1 Beta: 2.466e-1		
Order:	-1				
Thickness:	-1				
Structures					
Key:	st1				
Grain					
		1. Brandisterne			

Tunar

CC0 +

56