Synchrotron Scattering for Study of Soft Systems

Kevin G. Yager

Outline

• X-ray scattering for nanoscience

- Experimental examples:
 - P3HT
 - Block-copolymers
 - 2D nanoparticle assembly

- New techniques:
 - Variance scattering
 - GTSAXS
 - Nano-lattice model

Synchrotron

NSLS-II (USA)

CMS beamline at NSLS-II

X-ray Scattering

- Wide-angles: atomic/molecular
- Small-angles: nano

"Kinds" of Scattering

X-ray Scattering

BROOKHAVEN

- Qualitative: assess order
- Peak positions: quantify d-spacing
 - Multiple peaks: determine symmetry, solve for unit cell
- Peak width: calculate grain size
- Intensity: quantify amounts of populations
- Intensity along arcs: determine orientation distribution

GISAXS

- Grazing-Incidence Small-Angle X-ray Scattering
- Strong signal:
 - Beam projection on sample
 - Reflection-mode enhances E-field in film
- In-plane and out-of-place structure
- Analysis complicated:
 - Refraction and reflection shifts *q*-space
 - Data is sum of many possible reflection/ scattering terms

BROOKHAVEN

Outline

• X-ray scattering for nanoscience

- Experimental examples:
 - P3HT
 - Block-copolymers
 - 2D nanoparticle assembly

- New techniques:
 - Variance scattering
 - GTSAXS
 - Nano-lattice model

Organic Photo-voltaic

Prototypical OPV: P3HT/PCBM bulk-heterojunction

- Film thickness ≈ 100 nm
- Need network for charge transport, but small domains to avoid recombination
- Ideal morphology is actually trapped in a non-equilibrium state (control and stability issues!)

P3HT: poly 3-hexylthiophene

3.1

BROOKHAV NATIONAL LABORA

Anisotropic Conduction

• Face-on orientation would be ~300× better

P3HT Orientation

Edge-on $\alpha_h \approx 0.0002 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ Face-on $\alpha_h \approx 0.1 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

• Intensity along ring tells orientation

In-plane Alignment

- Chains align with the grooves
- Not an in-plane powder!

Johnston *ACS Nano* **2014**, 8, 243

Block copolymers

BROOKHAVEN NATIONAL LABORATORY

A in B matrix

GISAXS of BCP

Determine morphology, grain size, orientation, ... •

BROOKHAVEN

NATIONAL LAB

0.00 -0.04

0.00

 $\mathsf{q_x}~(\textup{\AA}^{-1})$

0.04

Reordering Transitions

• Transient states may appear during assembly

Reorientation Transition

2-D Nanoparticle Assembly

BROOKHAVEN

- Nanoparticles attracted to air-water (due to charge)
- Nanoparticle organization controlled by DNA coronas

Srivastava JACS 2014

2-D Nanoparticle Assembly

- Brute-force modeling...
- $P(q_r) = \int_0^{2\pi} |F(q_x, q_y)|^2 d\phi$ = $\int_0^{2\pi} |\rho(r)e^{iq.r} dV|^2 d\phi$ = $\int_0^{2\pi} |\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho(x, y)e^{iq_x x} e^{iq_y y} dx dy|^2 d\phi$ = $\int_0^{2\pi} |\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \rho(x, y)e^{iq_r \sin(\phi)x} e^{iq_r \cos(\phi)y} dx dy|^2 d\phi$

	•:	÷	:	·	•••	
	:::	····	.:	÷	•.	····
5	÷			••••	:	•••
	:		·:			

		۰.	÷		·
• ×,	÷.,			:	• • •
·.		····*	··		÷.,
	:				

Outline

• X-ray scattering for nanoscience

- Experimental examples:
 - P3HT
 - Block-copolymers
 - 2D nanoparticle assembly

- New techniques:
 - Variance scattering
 - GTSAXS
 - Nano-lattice model

'Variance Scattering'

 Conventionally, when we measure a scattering pattern, we accumulate data over a large area and time, to average-out random fluctuations...

 What if, instead of ignoring those variations, you emphasize them, and monitor them?

Scattering Ring

- A scattering ring is a summation of many peaks
- Each set of *m* peaks comes from a different grain in the sample

• The more grains probed by the beam, the more uniform the ring becomes

Yager and Majewski, J. Appl. Cryst. 2014, 47, 1855.

Scattering Ring

- The more grains probed by the beam, the more uniform the ring becomes
- The detector probes only a fraction of the peaks in reciprocal-space

$$f_{\text{Ewald}} = \frac{\pi 2q \times (\sqrt{2\pi}\sigma_q) \times (\sqrt{2\pi}\sigma_q)}{4\pi q^2 \times (\sqrt{2\pi}\sigma_q)}$$
$$= \frac{\sqrt{2\pi}\sigma_q}{2q}$$

$$N_p = m f_{\text{Ewald}} f_{\chi} N_g$$
$$= \frac{m \sqrt{2\pi} \sigma_q f_{\chi}}{2q} N_g$$
$$N_g = \frac{2q}{m \sqrt{2\pi} \sigma_q f_{\chi}} N_p$$

Ring Graininess

Simulations are used to generate scattering rings for different number of grains (N_g)

NATIONAL LABOR

• We can quantify the variation...

Ring Graininess

• One simple metric is the relative **standard deviation** of the intensity

NATIONAL LABOR

- The decay of the "sorted" curve also encodes how many peaks were in the signal
- We can fit the decay of the "sorted" curve

σ_R metric

Experimental: liquid crystal

KY02_cyl_0p5Cmin_6full_10s_SAXS-linecut

10¹

100

10

10

10

0 50100150200250300350400

200 250 300 350 400

KY04_cyl_2p0Cmin_5full_10s_SAXS-linecut

Isotropic: 0.00

qr pop: 417.63

qz pop 152.59

50

100 150

 χ (°

40

35

(n³⁰) 25 (a

Intensity 12 10

10

5 0

25

KY06_cyl_10p0Cmin_7full_10s_SAXS-linecut

Experimental

• We can measure variation in micron-sized grains, as a function of quench rate...

lamellar

hexagonal

ПКНА

NATIONAL LABORATORY

GISAXS

New concept: GTSAXS

• Grazing-incidence Transmission Small-Angle X-ray Scattering

Lu et al. J. Appl. Cryst. 2013, 46, 165.

BCP pattern

Modeling

- Distorted-Wave Born Approximation (DWBA) considers 4 possible reflection-scattering events
- Born Approximation (BA) is much simpler: just a single scattering term

Multiple Terms

• 4 terms of DWBA have different phases

Refraction correction

- Correction in GISAXS is large and nonlinear
- Correction in GTSAXS is just a small offset

GISAXS

GTSAXS

Lithographic line grating

Lu et al. J. Appl. Cryst. 2013, 46, 165.

GTSAXS Comparison

RRAA	KĤ		FN
NATIONAL	LAB	ORA	TORY
/			

	TSAXS	GTSAXS	GISAXS
Requirements		Thin film	Thin film
	Thin substrate	Flat substrate	Flat substrate
		Sample near edge	
		Focused beam	Focused beam
		<u>Beam near edge</u>	
		Sufficient incident angle	Low incident angle
Advantages		Strong signal	Strong signal
		qz data	qz data
	Simple analysis	Simple analysis	
Disadvantages	Thin substrate	Sample constraints	
	Weak signal		
			Complex analysis
	Limited qz data		

Lu et al. J. Appl. Cryst. 2013, 46, 165.

Nanoparticle superlattices

Nano-lattice x-ray model

- Derived a very general scattering formalism
- Allows for arbitrary lattice of arbitrary nano-objects

Yager, J. Appl. Cryst. 2014, 47, 118.

Formalism

BROOKHAVEN NATIONAL LABORATORY

Disorder

BROOKHAVEN NATIONAL LABORATORY

- Particle size polydispersity
- Grain size (correlation length)
- Positional disorder (DW)

Fitting data

- Can fit experimental data quantitatively, extracting parameters of interest
- Constraining parameters (e.g. via SEM) helps
- Many parameters can be fit uniquely

• Even in highly disordered systems, we can deduce structure...

Particle Properties

- Nano-object size and shape modulates peak heights
- Can substantially alter prediction

Lattice Site Defects

Conclusions

• X-ray scattering a powerful way to measure nanostructured thin films

- New techniques being used to analyze more complex systems:
 - Variance scattering for grain size & distribution
 - GTSAXS for complex nanostructures
 - New models for data fitting

Acknowledgements

- BCP & Variance: Pawel Majewski
- P3HT & GTSAXS: Xinhui Lu, Ben Ocko, Dan Johnston, Charles Black
- Nano-lattices: Fang Lu, Yugang Zhang, Oleg Gang

Center for Functional Nanomaterials Brookhaven National Laboratory

