Difference between revisions of "Peak shape"

From GISAXS
Jump to: navigation, search
(Grain Size Distribution)
(Fourier Analysis)
Line 80: Line 80:
 
====Fourier Analysis====
 
====Fourier Analysis====
 
* C.E. Kril and R. Birringer, [http://www.tandfonline.com/doi/abs/10.1080/01418619808224072#.VA3KbdbgX0M Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis] ''Philosophical Magazine A'' '''1998''', 77 (3), 621-640 [http://dx.doi.org/10.1080/01418619808224072 doi: 10.1080/01418619808224072]
 
* C.E. Kril and R. Birringer, [http://www.tandfonline.com/doi/abs/10.1080/01418619808224072#.VA3KbdbgX0M Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis] ''Philosophical Magazine A'' '''1998''', 77 (3), 621-640 [http://dx.doi.org/10.1080/01418619808224072 doi: 10.1080/01418619808224072]
 +
* J. Gubicza, J. Szépvölgyi, I. Mohai, L. Zsoldos, T Ungár, [http://www.sciencedirect.com/science/article/pii/S0921509399007029 Particle size distribution and dislocation density determined by high resolution X-ray diffraction in nanocrystalline silicon nitride powders] ''Materials Science and Engineering: A'' '''2000''', 280 (3), 263-269 [http://dx.doi.org/10.1016/S0921-5093(99)00702-9 doi: 10.1016/S0921-5093(99)00702-9]
 +
====Maximum Entropy====
 +
* N. Armstrong and W. Kalceff, [http://scripts.iucr.org/cgi-bin/paper?pii=S0021889899000692 A maximum entropy method for determining column-length distributions from size-broadened X-ray diffraction profiles] ''J. Appl. Cryst.'' '''1999''', 32, 600-613 [http://dx.doi.org/10.1107/S0021889899000692 doi: 10.1107/S0021889899000692]
  
 
===Other===
 
===Other===

Revision as of 10:34, 8 September 2014

Peak.png

The peak width observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.

Note also that instrumental resolution contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material grain size, plus a Lorentzian, representing instrumental resolution).

Generalized Peak Shape

A generalized peak shape can be computed using:

Where , describes the peak width, and describes the peak shape. The parameter is a ratio of gamma functions:

The limiting cases for peak shape are:

Thus the parameter allows one to vary continuously between a Lorentzian peak shape and a Gaussian peak shape. Note that for Lorentzian, describes the full-width at half-maximum (FWHM):

The Gaussian form can be written a few different ways:

where the width is described by:

And note that 2.35482004503...

Source

Literature Examples

Warren/Averbach paracrystal

Williamson/Hall

Grain Size Distribution

Fourier Analysis

Maximum Entropy

Other

See Also