Difference between revisions of "Talk:Extra:Intersecting planes"

From GISAXS
Jump to: navigation, search
(Created page with "==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>== In general, rotation of a vector <math>\scriptstyle \mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x...")
 
Line 1: Line 1:
 +
==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{1}</math>==
 +
In general, rotation of a vector <math>\scriptstyle
 +
\mathbf{v}_{\mathrm{start}} = \begin{bmatrix} x & y  & z \end{bmatrix}</math>about an arbitrary unit-vector <math>\scriptstyle
 +
\mathbf{n} = \begin{bmatrix} u & v  & w \end{bmatrix}</math> gives ([https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_and_angle 1], [http://inside.mines.edu/fs_home/gmurray/ArbitraryAxisRotation/ 2]):
 +
::<math>
 +
\mathbf{v}_{\mathrm{end}} = \begin{bmatrix} u(ux +vy+wz)(1-\cos \theta) + x \cos \theta + (-wy+vz)\sin \theta \\
 +
v(ux+vy+wz)(1 - \cos \theta) + y \cos \theta + (wx-uz) \sin \theta\\
 +
w(ux+vy+wz)(1-\cos \theta) + z \cos \theta + (-vx+uy) \sin \theta \end{bmatrix}
 +
</math>
 +
In this particular case, we thus expect:
 +
::<math>
 +
\begin{alignat}{2}
 +
\mathbf{v}_{2} & = \begin{bmatrix} -y\sin \phi \\
 +
y \cos \phi \\
 +
z(1-\cos \phi) + z \cos \phi\end{bmatrix}
 +
\\
 +
  & = \begin{bmatrix} -q \cos \alpha\sin \phi \\
 +
q \cos \alpha \cos \phi \\
 +
q \sin \alpha(1-\cos \phi) + q \sin \alpha \cos \phi\end{bmatrix}
 +
\\
 +
  & = q \begin{bmatrix} - \cos \alpha\sin \phi \\
 +
\cos \alpha \cos \phi \\
 +
\sin \alpha\end{bmatrix}
 +
\end{alignat}
 +
</math>
 +
 +
 
==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>==
 
==Rotate <math>\mathbf{v}_{2b}</math> about <math>\mathbf{n}_{2}</math>==
  

Revision as of 17:52, 21 December 2015

Rotate about

In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):

In this particular case, we thus expect:


Rotate about

In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):

In this particular case, we thus expect: