|
|
Line 1: |
Line 1: |
| ====Working results 1==== | | ====Working results 1==== |
| :<math> | | :<math> |
− | \mathbf{q} = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} | + | \begin{alignat}{2} |
| + | \mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\ |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ |
| + | \frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ |
| + | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\ |
| + | \frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\ |
| + | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ |
| + | |
| + | |
| + | \end{alignat} |
| </math> | | </math> |
| + | |
| + | |
| + | \frac{1}{\sqrt{1+\left(u\right)^2}} \\ |
| + | \frac{u}{\sqrt{1+\left(u\right)^2}} \\ |
| | | |
| ====Working results 2 (contains errors)==== | | ====Working results 2 (contains errors)==== |
Revision as of 10:56, 13 January 2016
Working results 1
\frac{1}{\sqrt{1+\left(u\right)^2}} \\
\frac{u}{\sqrt{1+\left(u\right)^2}} \\
Working results 2 (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: