Difference between revisions of "Talk:Geometry:TSAXS 3D"

From GISAXS
Jump to: navigation, search
(Working results 1)
(Working results 1)
Line 49: Line 49:
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 
\left( \frac{q}{k} \right)^2
 
\left( \frac{q}{k} \right)^2
     & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2  }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 d^2  } }{\sqrt{x^2 + d^2 + z^2 d^2  }} \right)^2 + \left( \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2  }} \right)^2 \\
+
     & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2  }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2  } }{\sqrt{x^2 + d^2 + z^2  }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2  }} \right)^2 \\
     & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 d^2  }\right)^2 + z^2d^2 }{x^2 + d^2 + z^2d^2} \\
+
     & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2   }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\
     & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} + x^2 + d^2 + z^2 d^2  \right) + z^2d^2 }{x^2 + d^2 + z^2d^2} \\
+
     & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2   \right) + z^2 }{x^2 + d^2 + z^2} \\
     & = \frac{2 x^2 + 2 d^2 + 2 z^2d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\
+
     & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
     & = 2 \frac{( x^2 + d^2 + z^2d^2 ) - d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\
+
     & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\
     & = 2 \left( 1  - \frac{d}{\sqrt{x^2 + d^2 + z^2d^2}} \right)
+
     & = 2 \left( 1  - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right)
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 12:04, 13 January 2016

Working results 1

Note that , and so:

And:

As a check:

Working results 2 (contains errors)

As a check of these results, consider:

Where we used:

And, we further note that:

Continuing: