Difference between revisions of "Talk:Geometry:WAXS 3D"
KevinYager (talk | contribs) (→Check) |
KevinYager (talk | contribs) (→Check) |
||
Line 16: | Line 16: | ||
\left ( \frac{q}{k} \right )^2 d^{\prime 2} | \left ( \frac{q}{k} \right )^2 d^{\prime 2} | ||
& = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ | & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ | ||
− | & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( v_{2y} ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( v_{2y} ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ | + | |
+ | & = \begin{alignat}{2} [ | ||
+ | & \left( x \cos \phi_g -\sin \phi_g ( v_{2y} ) \right)^2 \\ | ||
+ | & + \left( x \sin \phi_g + \cos \phi_g ( v_{2y} ) - d^{\prime} \right)^2 \\ | ||
+ | & + \left( d \sin \theta_g + z \cos \theta_g \right)^2 ] \end{alignat} \\ | ||
+ | |||
+ | & = \begin{alignat}{2} [ | ||
+ | & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ | ||
+ | & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\ | ||
+ | & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\ | ||
+ | & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\ | ||
+ | & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ | ||
Revision as of 15:11, 13 January 2016
Check
We define:
And solve: