|
|
Line 74: |
Line 74: |
| | | |
| & = \begin{alignat}{2} [ | | & = \begin{alignat}{2} [ |
− | & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ | + | & x^2 \cos^2 \phi_g - 2 x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2 \\ |
| & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\ | | & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\ |
| & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\ | | & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\ |
| & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\ | | & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\ |
− | & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ | + | & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 16:06, 13 January 2016
Check of Total Magnitude #1: Doesn't work
Check of Total Magnitude #2: Doesn't work
We define:
And calculate:
Grouping and rearranging: