Difference between revisions of "Talk:Geometry:WAXS 3D"

From GISAXS
Jump to: navigation, search
(Check of Total Magnitude #2: Doesn't work)
(Check of Total Magnitude #2: Doesn't work)
Line 57: Line 57:
 
( v_{2y} ) & = ( d \cos \theta_g - z \sin \theta_g ) \\
 
( v_{2y} ) & = ( d \cos \theta_g - z \sin \theta_g ) \\
 
( v_{2y} )^2 & = ( d \cos \theta_g - z \sin \theta_g )^2 \\
 
( v_{2y} )^2 & = ( d \cos \theta_g - z \sin \theta_g )^2 \\
     & = d^2 \cos^2 \theta_g -dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g
+
     & = d^2 \cos^2 \theta_g - 2dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
Line 86: Line 86:
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
     & = \begin{alignat}{2} [  
 
     & = \begin{alignat}{2} [  
       & x^2 + ( v_{2y} )^2  \\  
+
       & x^2 + ( v_{2y} )^2  \\  
 
       & - 2 d^{\prime} x \sin \phi_g \\  
 
       & - 2 d^{\prime} x \sin \phi_g \\  
       & + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} \cos \phi_g ( v_{2y} ) \\  
+
       & - 2 d^{\prime} \cos \phi_g ( v_{2y} ) \\  
       & - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\  
+
       & + d^{\prime 2} \\  
       & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
+
       & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
  
 
     & = \begin{alignat}{2} [  
 
     & = \begin{alignat}{2} [  
       & x^2 + ( d^2 \cos^2 \theta_g -dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g )  \\  
+
       & d^{\prime 2} + x^2 + ( d^2 \cos^2 \theta_g - 2dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g )  \\  
       & - 2 d^{\prime} x \sin \phi_g \\
+
       & - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} ) \\  
      & + (x \sin \phi_g - d^{\prime} - d^{\prime}) \cos \phi_g ( v_{2y} ) \\  
+
       & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
       & + d^{\prime 2} + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
 
  
 
     & = \begin{alignat}{2} [  
 
     & = \begin{alignat}{2} [  
       & d^{\prime 2} + x^2 + d^2 + z^2   \\  
+
       & d^{\prime 2} + x^2 + d^2 + z^2   \\  
       & - 2 d^{\prime} x \sin \phi_g \\  
+
       & - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} ) ] \end{alignat}  \\
      & + (x \sin \phi_g - 2 d^{\prime}) \cos \phi_g ( v_{2y} ) ] \end{alignat}  \\
+
 
 +
    & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\
  
    & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + (x \sin \phi_g - 2 d^{\prime}) \cos \phi_g ( v_{2y} )  \\
 
  
 
     & = ? \\
 
     & = ? \\

Revision as of 16:16, 13 January 2016

Check of Total Magnitude #1: Doesn't work

Check of Total Magnitude #2: Doesn't work

We define:

And calculate:

Grouping and rearranging: