Difference between revisions of "Talk:Geometry:WAXS 3D"
KevinYager (talk | contribs) (→Check of Total Magnitude #2: Doesn't work) |
KevinYager (talk | contribs) (→Check of Total Magnitude #2: Doesn't work) |
||
Line 57: | Line 57: | ||
( v_{2y} ) & = ( d \cos \theta_g - z \sin \theta_g ) \\ | ( v_{2y} ) & = ( d \cos \theta_g - z \sin \theta_g ) \\ | ||
( v_{2y} )^2 & = ( d \cos \theta_g - z \sin \theta_g )^2 \\ | ( v_{2y} )^2 & = ( d \cos \theta_g - z \sin \theta_g )^2 \\ | ||
− | & = d^2 \cos^2 \theta_g - | + | & = d^2 \cos^2 \theta_g - 2dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g |
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
Line 86: | Line 86: | ||
\left ( \frac{q}{k} \right )^2 d^{\prime 2} | \left ( \frac{q}{k} \right )^2 d^{\prime 2} | ||
& = \begin{alignat}{2} [ | & = \begin{alignat}{2} [ | ||
− | & x^2 | + | & x^2 + ( v_{2y} )^2 \\ |
& - 2 d^{\prime} x \sin \phi_g \\ | & - 2 d^{\prime} x \sin \phi_g \\ | ||
− | & | + | & - 2 d^{\prime} \cos \phi_g ( v_{2y} ) \\ |
− | & | + | & + d^{\prime 2} \\ |
− | & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ | + | & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ |
& = \begin{alignat}{2} [ | & = \begin{alignat}{2} [ | ||
− | & x^2 | + | & d^{\prime 2} + x^2 + ( d^2 \cos^2 \theta_g - 2dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g ) \\ |
− | & - 2 d^{\prime} | + | & - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} ) \\ |
− | + | & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\ | |
− | & | ||
& = \begin{alignat}{2} [ | & = \begin{alignat}{2} [ | ||
− | & d^{\prime 2} + x^2 | + | & d^{\prime 2} + x^2 + d^2 + z^2 \\ |
− | & - 2 d^{\prime} x \sin \phi_g \\ | + | & - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} ) ] \end{alignat} \\ |
− | + | ||
+ | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\ | ||
− | |||
& = ? \\ | & = ? \\ |
Revision as of 16:16, 13 January 2016
Check of Total Magnitude #1: Doesn't work
Check of Total Magnitude #2: Doesn't work
We define:
And calculate:
Grouping and rearranging: