|
|
Line 41: |
Line 41: |
| & \begin{align} | | & \begin{align} |
| = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ | | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ |
− | & && + T_i R_i T_f^2 F(+Q_{z1})F(-Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ | + | & && + T_i R_i T_f^2 F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
| | | |
| & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ | | & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ |
Line 66: |
Line 66: |
| | | |
| & + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ | | & + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ |
− | & + T_i R_i T_f R_f F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1})F(-Q_{z1}) \\ | + | & + T_i R_i T_f^2 F(+Q_{z1})F(-Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
| + | |
| & + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ | | & + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ |
| & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ | | & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ |
| + | |
| & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ | | & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ |
| & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ | | & + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| + | |
| & + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ | | & + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
− | & + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ | + | & + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| + | |
| + | |
| | | |
| = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ | | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ |
− | & + 2 \times T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ | + | & + 2 \times T_i^2T_fR_f F(+Q_{z1})F(-Q_{z2}) \\ |
− | & + T_i R_i T_f R_f [ 2 F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z1})F(+Q_{z2}) + 2 F(+Q_{z2})F(-Q_{z2}) ] \\ | + | & + 2 \times T_iR_iT_f^2 F(+Q_{z1})F(-Q_{z2}) \\ |
− | & + 2 \times T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ | + | & + 2 \times T_i R_i T_f R_f [ F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z2})F(-Q_{z2}) ] \\ |
− | & + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\
| + | & + 2 \times T_iR_iR_f^2 F(-Q_{z1})F(-Q_{z2}) \\ |
− | & + 2 \times R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ | |
| | | |
| | | |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to: