|
|
Line 81: |
Line 81: |
| = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ | | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ |
| & + 2 \times T_i^2T_fR_f F(+Q_{z1})F(-Q_{z2}) \\ | | & + 2 \times T_i^2T_fR_f F(+Q_{z1})F(-Q_{z2}) \\ |
− | & + 2 \times T_iR_iT_f^2 F(+Q_{z1})F(-Q_{z2}) \\ | + | & + 2 \times T_iR_iT_f^2 F(+Q_{z1})F(+Q_{z2}) \\ |
| & + 2 \times T_i R_i T_f R_f [ F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z2})F(-Q_{z2}) ] \\ | | & + 2 \times T_i R_i T_f R_f [ F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z2})F(-Q_{z2}) ] \\ |
| & + 2 \times T_iR_iR_f^2 F(-Q_{z1})F(-Q_{z2}) \\ | | & + 2 \times T_iR_iR_f^2 F(-Q_{z1})F(-Q_{z2}) \\ |
Line 89: |
Line 89: |
| = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ | | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 + T_i^2 R_f^2 | F(-Q_{z2}) |^2 + R_i^2 T_f^2 | F(+Q_{z2}) |^2 + R_i^2 R_f^2 | F(-Q_{z1}) |^2 \\ |
| & + 2 \times T_i^2T_fR_f F(+Q_{z1})F(-Q_{z2}) | | & + 2 \times T_i^2T_fR_f F(+Q_{z1})F(-Q_{z2}) |
− | + 2 \times T_iR_iT_f^2 F(+Q_{z1})F(-Q_{z2}) \\ | + | + 2 \times T_iR_iT_f^2 F(+Q_{z1})F(+Q_{z2}) \\ |
| & + 2 \times T_i R_i T_f R_f [ F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z2})F(-Q_{z2}) ] \\ | | & + 2 \times T_i R_i T_f R_f [ F(+Q_{z1})F(-Q_{z1}) + F(+Q_{z2})F(-Q_{z2}) ] \\ |
| & + 2 \times T_iR_iR_f^2 F(-Q_{z1})F(-Q_{z2}) | | & + 2 \times T_iR_iR_f^2 F(-Q_{z1})F(-Q_{z2}) |
Line 105: |
Line 105: |
| = \,\, & T_i^2 T_f^2 | F_{+1} |^2 + T_i^2 R_f^2 | F_{-2} |^2 + R_i^2 T_f^2 | F_{+2} |^2 + R_i^2 R_f^2 | F_{-1} |^2 \\ | | = \,\, & T_i^2 T_f^2 | F_{+1} |^2 + T_i^2 R_f^2 | F_{-2} |^2 + R_i^2 T_f^2 | F_{+2} |^2 + R_i^2 R_f^2 | F_{-1} |^2 \\ |
| & + 2 \times T_i^2T_fR_f F_{+1}F_{-2} | | & + 2 \times T_i^2T_fR_f F_{+1}F_{-2} |
− | + 2 \times T_iR_iT_f^2 F_{+1}F_{-2} \\ | + | + 2 \times T_iR_iT_f^2 F_{+1}F_{+2} \\ |
| & + 2 \times T_i R_i T_f R_f [ F_{+1}F_{-1} + F_{+2}F_{-2} ] \\ | | & + 2 \times T_i R_i T_f R_f [ F_{+1}F_{-1} + F_{+2}F_{-2} ] \\ |
| & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} | | & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} |
Revision as of 09:06, 7 March 2018
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :