Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(TBD)
(Expansion)
Line 158: Line 158:
  
 
     & \begin{align}
 
     & \begin{align}
         = \,\, &  T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\
+
         = \,\, &  |T_i T_f|^2 | F_{+1} |^2 && + T_i^2 T_f R_f F_{+1}F_{-2} \\
           & && + T_i R_i T_f^2 F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\
+
           & && + T_i R_i T_f^2 F_{+1}F_{+2} + T_i R_i T_f R_f F_{+1} F_{-1}  \\
  
           & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\
+
           & + |T_i R_f|^2 | F_{-2} |^2 && + T_i^2T_fR_f F_{+1} F_{-2} \\
           & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\
+
           & && + T_i R_i T_f R_f F_{+2}F_{-2} + T_i R_i R_f^2 F_{-1} F_{-2}  \\
  
           & + R_i^2 T_f^2 | F(+Q_{z2}) |^2 && + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\
+
           & + |R_i T_f|^2 | F_{+2} |^2 && + T_i R_i T_f^2 F_{+1} F_{+2} \\
           & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\
+
           & && + T_i R_i T_f R_f F_{+2}F_{-2} + R_i^2 T_f R_f F_{-1} F_{+2}  \\
  
           & + R_i^2 R_f^2 | F(-Q_{z1}) |^2 && + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\
+
           & + |R_i R_f|^2 | F_{-1} |^2 && + T_i R_i T_f R_f F_{+1} F_{-1} \\
           & && + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\
+
           & && + T_i R_i R_f^2 F_{-1}F_{-2} + R_i^2 T_f R_f F_{-1} F_{+2}  \\
  
 
         \end{align} \\
 
         \end{align} \\

Revision as of 08:01, 13 March 2018

DWBA Equation in thin film

Using the notation for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:




Equation

We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:

Breaking into components

The experimental data can be broken into contributions from the transmitted channel and reflected channel :

We define the ratio between the channels to be:

Such that one can compute the two components from:

and: