|
|
Line 177: |
Line 177: |
| ===Simplification=== | | ===Simplification=== |
| We can rearrange to: | | We can rearrange to: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ |
| + | |
| + | & + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\ |
| + | |
| + | & + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\ |
| + | |
| + | & + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\ |
| + | |
| + | & + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^*\\ |
| + | |
| + | & + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\ |
| + | & + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} \\ |
| + | & + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} \\ |
| + | & + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\ |
| + | |
| + | = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ |
| + | |
| + | & + |T_i|^2 [ T_f R_f^* F_{+1}F_{-2}^* + T_f^*R_f F_{+1}^* F_{-2} ] \\ |
| + | |
| + | & + |T_f|^2 [ T_i R_i^* F_{+1}F_{+2}^* + T_i^* R_i F_{+1}^* F_{+2} ] \\ |
| + | |
| + | & + |R_i|^2 [ T_f R_f^* F_{-1}^* F_{+2} + T_f^* R_f F_{-1} F_{+2}^* ] \\ |
| + | |
| + | & + |R_f|^2 [ T_i R_i^* F_{-1}^* F_{-2} + T_i^* R_i F_{-1}F_{-2}^* ]\\ |
| + | |
| + | & + [ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} ] \\ |
| + | & + [ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} ] \\ |
| + | |
| + | \end{align} |
| + | </math> |
| + | |
| + | We define <math>I_{+1}=|F_{+1}|^2</math>, and note that for any complex number <math>c</math>, it is true that <math>c+c^*=2 \mathrm{Re}[c]</math>. Thus: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) |
| + | = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ |
| + | |
| + | & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\ |
| + | |
| + | & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ |
| + | |
| + | & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\ |
| + | |
| + | & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ |
| + | |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\ |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ |
| + | |
| + | = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ |
| + | |
| + | & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ |
| + | |
| + | & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ |
| + | |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ |
| + | \end{align} |
| + | </math> |
| | | |
| ==Breaking into components== | | ==Breaking into components== |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
We define , and note that for any complex number , it is true that . Thus:
Breaking into components
The experimental data can be broken into contributions from the transmitted channel and reflected channel :
We define the ratio between the channels to be:
Such that one can compute the two components from:
and: