Difference between revisions of "Talk:Geometry:TSAXS 3D"
KevinYager (talk | contribs) (→Working results 1) |
KevinYager (talk | contribs) (→Compute q_y) |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | ==== | + | ====Compute <math>q_y</math>==== |
:<math> | :<math> | ||
\begin{alignat}{2} | \begin{alignat}{2} | ||
− | \mathbf{q} & = \ | + | \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ |
− | & = \ | + | & = k \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} |
− | + | \end{alignat} | |
− | & = \ | + | </math> |
− | \frac{ | + | So: |
− | + | :<math> | |
− | \ | + | \begin{alignat}{2} |
− | + | \alpha_f & = \sin^{-1} \left[ \frac{q_z}{k} \right] \\ | |
− | & = \ | + | \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ |
− | \frac{ | + | \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ |
− | \frac{ | + | \frac{q_y}{k} & = \cos \theta_f \cos \alpha_f - 1 \\ |
− | \frac{ | + | q_y & = k \left ( \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \right )\\ |
− | + | & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) | |
− | + | \end{alignat} | |
+ | </math> | ||
+ | Or equivalently: | ||
+ | :<math> | ||
+ | \begin{alignat}{2} | ||
+ | q_y & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) \\ | ||
+ | & = k \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - k | ||
\end{alignat} | \end{alignat} | ||
</math> | </math> | ||
− | + | ====Scratch/working (contains errors)==== | |
− | |||
− | |||
− | |||
− | ==== | ||
As a check of these results, consider: | As a check of these results, consider: | ||
:<math> | :<math> |
Latest revision as of 15:29, 15 April 2019
Compute
So:
Or equivalently:
Scratch/working (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: