|
|
(9 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ====Working results 1==== | + | ====Compute <math>q_y</math>==== |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \mathbf{q} & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} \\ | + | \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \\ \cos \left( \arctan\left[ \frac{x}{d} \right] \right) \cos \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) - 1 \\ \sin \left( \arctan \left[ \frac{z }{d / \cos \theta_f} \right] \right) \end{bmatrix} \\ | + | & = k \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} |
− | | |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix}
| |
− | \frac{x/d}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\
| |
− | \frac{1}{\sqrt{1+\left(x/d \right)^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
| |
− | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\
| |
− | | |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix}
| |
− | \frac{x d}{\sqrt{d^2+x^2 }} \frac{1}{\sqrt{d^2+z^2\cos^2 \theta_f}} \\
| |
− | \frac{d}{\sqrt{d^2+x^2}} \frac{d}{\sqrt{d^2+z^2\cos^2 \theta_f}} - 1 \\
| |
− | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ | |
− | | |
− | \end{alignat}
| |
− | </math>
| |
− | Note that <math>\cos \theta_f = d^2/\sqrt{d^2+x^2}</math>, and <math>\cos^2 \theta_f = d^4/(d^2+x^2)</math> so:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | \frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }}
| |
− | & = \frac{1}{\sqrt{d^2+z^2 \left( d^4/(d^2+x^2) \right) }} \\
| |
− | & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2 d^2)/(d^2+x^2) }} \\
| |
− | & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\
| |
− | | |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | And:
| + | So: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \mathbf{q} | + | \alpha_f & = \sin^{-1} \left[ \frac{q_z}{k} \right] \\ |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix}
| + | \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ |
− | \frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\ | + | \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ |
− | \frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} - 1 \\ | + | \frac{q_y}{k} & = \cos \theta_f \cos \alpha_f - 1 \\ |
− | \frac{z \left( d^2/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \end{bmatrix} \\ | + | q_y & = k \left ( \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \right )\\ |
− | | + | & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix} | |
− | \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2 }} \\ | |
− | \frac{d }{\sqrt{x^2 + d^2 + z^2 d^2 }} - 1 \\
| |
− | \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2 }} \end{bmatrix} \\ | |
− | | |
− | | |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | | + | Or equivalently: |
− | As a check:
| |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | \left( \frac{q}{k} \right)^2 | + | q_y & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) \\ |
− | & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 d^2 } }{\sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 + \left( \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 \\
| + | & = k \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - k |
− | & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 d^2 }\right)^2 + z^2d^2 }{x^2 + d^2 + z^2d^2} \\
| |
− | & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} + x^2 + d^2 + z^2 d^2 \right) + z^2d^2 }{x^2 + d^2 + z^2d^2} \\
| |
− | & = \frac{2 x^2 + 2 d^2 + 2 z^2d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\ | |
− | & = 2 \frac{( x^2 + d^2 + z^2d^2 ) - d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\
| |
− | & = 2 \left( 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2d^2}} \right)
| |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| | | |
− | ====Working results 2 (contains errors)==== | + | ====Scratch/working (contains errors)==== |
| As a check of these results, consider: | | As a check of these results, consider: |
| :<math> | | :<math> |