Difference between revisions of "Form Factor:Cylindrical symmetry"
KevinYager (talk | contribs) (Created page with "==Derivation== ===Form Factor=== Assuming a particle is cylindrically-symmetric: ::<math>\rho(\mathbf{r}) = \rho(r,\phi,z) = \rho(r)</math> We of course use [http://en.wikiped...") |
KevinYager (talk | contribs) |
||
Line 21: | Line 21: | ||
F(\mathbf{q}) | F(\mathbf{q}) | ||
& = \int \rho(\mathbf{r}) e^{i \mathbf{q} \cdot \mathbf{r} } \mathrm{d}V \\ | & = \int \rho(\mathbf{r}) e^{i \mathbf{q} \cdot \mathbf{r} } \mathrm{d}V \\ | ||
− | & = \int\limits_{z=}^{L}\int\limits_{\phi=0}^{2 \pi}\int\limits_{r=0}^{\infty} \rho(r) e^{i \mathbf{q} \cdot \mathbf{r} } r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ | + | & = \int\limits_{z=0}^{L}\int\limits_{\phi=0}^{2 \pi}\int\limits_{r=0}^{\infty} \rho(r) e^{i \mathbf{q} \cdot \mathbf{r} } r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ |
& = \int\limits_{0}^{L}\int\limits_{0}^{2 \pi}\int\limits_{0}^{\infty} \rho(r) e^{i (q_x r \cos \phi + q_z z) } r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ | & = \int\limits_{0}^{L}\int\limits_{0}^{2 \pi}\int\limits_{0}^{\infty} \rho(r) e^{i (q_x r \cos \phi + q_z z) } r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ | ||
& = \left( \int\limits_{0}^{L} e^{i q_z z } \mathrm{d}z \right) \int\limits_{0}^{\infty} r \rho(r) \left ( \int\limits_{0}^{2 \pi} e^{i q_x r \cos \phi } \mathrm{d}\phi \right) \mathrm{d}r \\ | & = \left( \int\limits_{0}^{L} e^{i q_z z } \mathrm{d}z \right) \int\limits_{0}^{\infty} r \rho(r) \left ( \int\limits_{0}^{2 \pi} e^{i q_x r \cos \phi } \mathrm{d}\phi \right) \mathrm{d}r \\ |
Latest revision as of 12:17, 23 May 2022
Derivation
Form Factor
Assuming a particle is cylindrically-symmetric:
We of course use cylindrical coordinates:
We can take advantage of the cylindrical symmetry by rotating any candidate q-vector into the plane, eliminating the component:
The form factor is (note that the integration limits in z define the particle size in that direction):