Difference between revisions of "Python"

From GISAXS
Jump to: navigation, search
(Hints about Python usage)
 
(5 intermediate revisions by the same user not shown)
Line 13: Line 13:
 
* [[Python:Indexing]]
 
* [[Python:Indexing]]
 
* [[Python:FFT]]
 
* [[Python:FFT]]
 +
* [[Python:Speed]]
 +
** A. Boulle and J. Kieffer [http://scripts.iucr.org/cgi-bin/paper?gj5229 High-performance Python for crystallographic computing] ''J. Appl. Cryst.'' '''2019''', 52 [http://gisaxs.com/index.php?title=Python&action=edit&section=4tps://doi.org/10.1107/S1600576719008471 doi: 10.1107/S1600576719008471]
 +
 
===Official Site===
 
===Official Site===
 
* [https://www.python.org/ www.python.org]
 
* [https://www.python.org/ www.python.org]
 
** [https://www.python.org/downloads/ Downloads]
 
** [https://www.python.org/downloads/ Downloads]
===Packages===
+
===Packages for Scattering===
 +
* '''FabIO''': Import 2D area detector data into Python.
 +
** Citation: E. B. Knudsen, H. O. Sørensen, J. P. Wright, G. Goret and J. Kieffer [http://scripts.iucr.org/cgi-bin/paper?kk5124 FabIO: easy access to two-dimensional X-ray detector images in Python] ''J. Appl. Cryst.'' '''2013''', 46, 537-539. [http://dx.doi.org/10.1107/S0021889813000150 doi: 10.1107/S0021889813000150]
 +
** [https://pypi.python.org/pypi/fabio Source code.]
 +
* '''pyHST''': Tomographic reconstruction.
 
* '''pyFAI''': Fast azimuthal integration of 2D area images.
 
* '''pyFAI''': Fast azimuthal integration of 2D area images.
 
** Citation: G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca and J. Kieffer [http://scripts.iucr.org/cgi-bin/paper?fv5028 The fast azimuthal integration Python library: pyFAI] ''J. Appl. Cryst.'' '''2015''', 48, 510-519. [http://dx.doi.org/10.1107/S1600576715004306 doi: 10.1107/S1600576715004306]
 
** Citation: G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca and J. Kieffer [http://scripts.iucr.org/cgi-bin/paper?fv5028 The fast azimuthal integration Python library: pyFAI] ''J. Appl. Cryst.'' '''2015''', 48, 510-519. [http://dx.doi.org/10.1107/S1600576715004306 doi: 10.1107/S1600576715004306]
 +
** [http://www.esrf.eu/UsersAndScience/Publications/Highlights/2012/et/et3 Official site.]
 +
** [https://github.com/kif/pyFAI Source code.]

Latest revision as of 07:38, 25 July 2019

Python is a powerful and flexible programming language. It is increasingly used in scientific software packages, because it has a large number of libraries that are extremely useful in numerical and scientific computing. For instance:

  • numpy: Also known as numerical python, this package allows for efficient handling of vectors, arrays, matrices, and associated computations.
  • matplotlib: Plotting library that can generate graphs of datasets, including area images. Publication-quality images are possible with some effort.
  • scipy: A large collection of computational tools relevant to scientific data.
  • Python Image Library (PIL): A library that allows opening, converting, and editing image files including the TIFF files frequently output by x-ray area detectors in scattering instruments.


See Also

Hints about Python usage

Official Site

Packages for Scattering