|
|
(25 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ===[[TSAXS]] 3d===
| |
− | The ''q''-vector in fact has three components:
| |
− | :<math>
| |
− | \mathbf{q} = \begin{bmatrix} q_x & q_y & q_z \end{bmatrix}
| |
− | </math>
| |
− | Consider that the [[x-ray]] beam points along +''y'', so that on the [[detector]], the horizontal is ''x'', and the vertical is ''z''. We assume that the x-ray beam hits the flat 2D area detector at 90° at detector (pixel) position <math>\scriptstyle (x,z) </math>. The scattering angles are then:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | \theta_f & = \arctan\left( \frac{x}{d} \right) \\
| |
− | \alpha_f ^\prime & = \arctan\left( \frac{z}{d} \right) \\
| |
− | \alpha_f & = \arctan \left( \frac{z }{d / \cos \theta_f} \right)
| |
− | \end{alignat}
| |
− | </math>
| |
− | where <math>\scriptstyle d</math> is the sample-detector distance, <math>\scriptstyle \alpha_f ^{\prime} </math> is the out-of-plane component (angle w.r.t. to ''y''-axis, rotation about x-axis), and <math>\scriptstyle \theta_f </math> is the in-plane component (rotation about ''z''-axis). The alternate angle, <math>\scriptstyle \alpha_f </math>, is the elevation angle in the plane defined by <math>\scriptstyle \theta_f </math>.
| |
| | | |
− | The [[momentum transfer]] components are:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f \\
| |
− | q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f - 1 \right ) \\
| |
− | q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f
| |
− | \end{alignat}
| |
− | </math>
| |
− | Or:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | q_x & = \frac{2 \pi}{\lambda} \sin \theta_f \cos \alpha_f^\prime \\
| |
− | q_y & = \frac{2 \pi}{\lambda} \left ( \cos \theta_f \cos \alpha_f^\prime - 1 \right ) \\
| |
− | q_z & = \frac{2 \pi}{\lambda} \sin \alpha_f^\prime \cos \theta_f
| |
− | \end{alignat}
| |
− | </math>
| |
− | And, of course:
| |
− | :<math>
| |
− | \begin{alignat}{2}
| |
− | q & = \sqrt{ q_x^2 + q_y^2 + q_z^2 }
| |
− | \end{alignat}
| |
− | </math>
| |