|
|
(16 intermediate revisions by the same user not shown) |
Line 12: |
Line 12: |
| </math> | | </math> |
| | | |
− | ==Expansion== | + | ==Expansion (incorrect)== |
| + | '''WARNING: This incorrectly ignores the complex components.''' |
| ===Terms=== | | ===Terms=== |
| If one expands the <math>|...|^2</math> of the DWBA, one obtains 16 terms: | | If one expands the <math>|...|^2</math> of the DWBA, one obtains 16 terms: |
Line 109: |
Line 110: |
| & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} | | & + 2 \times T_iR_iR_f^2 F_{-1}F_{-2} |
| + 2 \times R_i^2T_fR_f F_{-1}F_{+2} | | + 2 \times R_i^2T_fR_f F_{-1}F_{+2} |
| + | \end{align} |
| + | </math> |
| + | |
| + | ==Expansion== |
| + | |
| + | ===Terms=== |
| + | If one expands the <math>|...|^2</math> of the DWBA, one obtains 16 terms: |
| + | |
| + | <math> |
| + | |
| + | \begin{matrix} |
| + | & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ |
| + | (T_i T_f) & T_i T_i^* T_f T_f^* & T_i T_i^* T_f R_f^* & T_i R_i^* T_f T_f^* & T_i R_i^* T_f R_f^* \\ |
| + | (T_i R_f) & T_i T_i^* T_f^* R_f & T_i T_i^* R_f R_f^* & T_i R_i^* T_f^* R_f & T_i R_i^* R_f R_f^* \\ |
| + | (R_i T_f) & T_i^* R_i T_f T_f^* & T_i^* R_i T_f R_f^* & R_i R_i^* T_f T_f^* & R_i R_i^* T_f R_f^* \\ |
| + | (R_i R_f) & T_i^* R_i T_f^* R_f & T_i^* R_i R_f R_f^* & R_i R_i^* T_f^* R_f & R_i R_i^* R_f R_f^* \\ |
| + | \end{matrix} |
| + | |
| + | </math> |
| + | |
| + | |
| + | <math> |
| + | |
| + | \begin{matrix} |
| + | & (T_i^* T_f^*) & (T_i^* R_f^*) & (R_i^* T_f^*) & (R_i^* R_f^*) \\ |
| + | (T_i T_f) & |T_i T_f|^2 & |T_i|^2 T_f R_f^* & T_i R_i^* |T_f|^2 & T_i R_i^* T_f R_f^* \\ |
| + | (T_i R_f) & |T_i|^2 T_f^* R_f & |T_i R_f|^2 & T_i R_i^* T_f^* R_f & T_i R_i^* |R_f|^2 \\ |
| + | (R_i T_f) & T_i^* R_i |T_f|^2 & T_i^* R_i T_f R_f^* & |R_i T_f|^2 & |R_i|^2 T_f R_f^* \\ |
| + | (R_i R_f) & T_i^* R_i T_f^* R_f & T_i^* R_i |R_f|^2 & |R_i|^2 T_f^* R_f & | R_i R_f |^2 \\ |
| + | \end{matrix} |
| + | |
| + | </math> |
| + | |
| + | |
| + | |
| + | |
| + | ===Equation=== |
| + | We take advantage of a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>. The DWBA equation can thus be expanded as: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) & = | |
| + | T_i T_f F_{+1} |
| + | + T_i R_f F_{-2} |
| + | + R_i T_f F_{+2} |
| + | + R_i R_f F_{-1} | ^{2} \\ |
| + | |
| + | & \begin{align} |
| + | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* \\ |
| + | & && + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\ |
| + | |
| + | & + |T_i R_f|^2 | F_{-2} |^2 && + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\ |
| + | & && + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} \\ |
| + | |
| + | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\ |
| + | & && + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} \\ |
| + | |
| + | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\ |
| + | & && + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^* + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\ |
| + | |
| + | \end{align} \\ |
| + | |
| + | \end{align} |
| + | </math> |
| + | |
| + | ===Simplification=== |
| + | We can rearrange to: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ |
| + | |
| + | & + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\ |
| + | |
| + | & + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\ |
| + | |
| + | & + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\ |
| + | |
| + | & + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^*\\ |
| + | |
| + | & + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\ |
| + | & + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} \\ |
| + | & + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} \\ |
| + | & + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\ |
| + | |
| + | = \, \, & |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\ |
| + | |
| + | & + |T_i|^2 [ T_f R_f^* F_{+1}F_{-2}^* + T_f^*R_f F_{+1}^* F_{-2} ] \\ |
| + | |
| + | & + |T_f|^2 [ T_i R_i^* F_{+1}F_{+2}^* + T_i^* R_i F_{+1}^* F_{+2} ] \\ |
| + | |
| + | & + |R_i|^2 [ T_f R_f^* F_{-1}^* F_{+2} + T_f^* R_f F_{-1} F_{+2}^* ] \\ |
| + | |
| + | & + |R_f|^2 [ T_i R_i^* F_{-1}^* F_{-2} + T_i^* R_i F_{-1}F_{-2}^* ]\\ |
| + | |
| + | & + [ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} ] \\ |
| + | & + [ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} ] \\ |
| + | |
| + | \end{align} |
| + | </math> |
| + | |
| + | We define <math>I_{+1}=|F_{+1}|^2</math>, and note that for any complex number <math>c</math>, it is true that <math>c+c^*=2 \mathrm{Re}[c]</math>. Thus: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) |
| + | = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ |
| + | |
| + | & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\ |
| + | |
| + | & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ |
| + | |
| + | & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\ |
| + | |
| + | & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ |
| + | |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\ |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ |
| + | |
| + | = \, \, & |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\ |
| + | |
| + | & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^* F_{+1}F_{+2}^* ] \\ |
| + | |
| + | & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^* F_{-1}^* F_{-2} ]\\ |
| + | |
| + | & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\ |
| \end{align} | | \end{align} |
| </math> | | </math> |
| | | |
| ==Breaking into components== | | ==Breaking into components== |
− | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{Tc}(qz)</math> and reflected channel <math>I_{Rc}(qz)</math>: | + | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,\mathrm{Tc}}(qz)</math> and reflected channel <math>I_{d,\mathrm{Rc}}(qz)</math>: |
| | | |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
| I_d(q_{z}) | | I_d(q_{z}) |
− | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ |
− | & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Tc}}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Rc}}) \\ |
| + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,\mathrm{Tc}}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,\mathrm{Rc}}(q_z) \\ |
| + | & = |Tc|^2 I_{d,\mathrm{Tc}}(q_z) + |Rc|^2 I_{d,\mathrm{Rc}}(q_z) \\ |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 127: |
Line 256: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | w | + | w (q_z) |
− | & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) } | + | & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) } |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 136: |
Line 265: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
− | I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w} \right ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w} \right ) \\ |
− | I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ | + | I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ |
− | I_{Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ | + | I_{d,\mathrm{Tc}}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 148: |
Line 277: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2} | + | I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ |
| + | & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) |
| + | \end{align} |
| + | </math> |
| + | |
| + | or: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
| + | & = |Tc|^2 \left( \frac{w}{1-w} I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
| + | I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) }{|Tc|^2 \frac{w}{1-w} + |Rc|^2} |
| \end{align} | | \end{align} |
| </math> | | </math> |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
We define , and note that for any complex number , it is true that . Thus:
Breaking into components
The experimental data can be broken into contributions from the transmitted channel and reflected channel :
We define the ratio between the channels to be:
Such that one can compute the two components from:
and:
or: