|
|
(5 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | ===Compute <math>q_y</math>=== | + | ====Compute <math>q_y</math>==== |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ | | \mathbf{q} & = \begin{bmatrix} q_x \\ q_y \\ q_z \end{bmatrix} \\ |
− | & = \frac{2 \pi}{\lambda} \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} | + | & = k \begin{bmatrix} \sin \theta_f \cos \alpha_f \\ \cos \theta_f \cos \alpha_f - 1 \\ \sin \alpha_f \end{bmatrix} |
| + | \end{alignat} |
| + | </math> |
| + | So: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \alpha_f & = \sin^{-1} \left[ \frac{q_z}{k} \right] \\ |
| + | \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ |
| + | \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ |
| + | \frac{q_y}{k} & = \cos \theta_f \cos \alpha_f - 1 \\ |
| + | q_y & = k \left ( \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \right )\\ |
| + | & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) |
| + | \end{alignat} |
| + | </math> |
| + | Or equivalently: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q_y & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) \\ |
| + | & = k \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - k |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Latest revision as of 15:29, 15 April 2019
Compute
So:
Or equivalently:
Scratch/working (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: