|
|
(3 intermediate revisions by the same user not shown) |
Line 45: |
Line 45: |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
− | One can establish a relationship between eccentricity and PrA by setting <math>b=1</math> and considering <math>a \in [1, \infnty</math>: | + | One can establish a relationship between eccentricity and PrA by setting <math>b=1</math> and considering <math>a \in [1, \infty]</math>: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \mathrm{PRA} & \approx \frac{(a+1) }{ \sqrt{a} } \\ |
| + | e & = \sqrt{1 - \frac{1}{a^2}} |
| + | \end{alignat} |
| + | </math> |
| + | In particular: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \frac{(a+1) }{ \sqrt{a} } & = \mathrm{PRA} \\ |
| + | (a+1)^2 & = \mathrm{PRA}^2 a \\ |
| + | a^2+2a+1- \mathrm{PRA}^2 a & = 0 \\ |
| + | (1)a^2+(2-\mathrm{PRA}^2 )a+(1) & = 0 \\ |
| + | \end{alignat} |
| + | </math> |
| + | From the quadratic equation: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\ |
| + | & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{4 -4\mathrm{PRA}^2 + \mathrm{PRA}^4 - 4} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{\mathrm{PRA}^4 - 4\mathrm{PRA}^2} \right)\\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| + | \end{alignat} |
| + | </math> |
| + | Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch. |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | a & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| + | a^2 & = \frac{1}{4} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2\\ |
| + | \end{alignat} |
| + | </math> |
| + | And so: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | e & = \sqrt{1 - \frac{1}{a^2}} \\ |
| + | & = \sqrt{1 - \frac{4}{\left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2}} \\ |
| + | \end{alignat} |
| + | </math> |
| + | We can convert into a width:height ratio (<math>a/b</math>) as: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \frac{a}{b} & = \sqrt{1 - e^2} \\ |
| + | & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\ |
| + | \end{alignat} |
| + | </math> |
Latest revision as of 09:55, 31 May 2022
PrA is a simple ad-hoc parameter to define the "non-circularity" or eccentricity of a 2D object. This quantity is simply:
Where is the object's perimeter, is its surface area, and is an effective size (radius), computed based on the corresponding circle of the same area:
This definition of PrA is convenient, since it provides a simple measure of eccentricity. In particular, for a circle one expects:
Since a circle has the minimal perimeter (for a given area), this is a limiting value of PrA:
And thus any non-circular object will have a larger PrA. An infinitely eccentric object would have .
Ellipse
If the object is an ellipse, with equation:
Then the width is and height (we assume ), the foci are for . The eccentricity is:
A circle has , while increasingly squashed ellipses have values of closer and closer to . The area of an ellipse is:
The perimeter is not analytic but can be approximated very roughly by:
Which yields:
One can establish a relationship between eccentricity and PrA by setting and considering :
In particular:
From the quadratic equation:
Since as , we select the positive branch.
And so:
We can convert into a width:height ratio () as: