Difference between revisions of "Quantum Mechanics"
KevinYager (talk | contribs) (→Wavefunction) |
KevinYager (talk | contribs) |
||
Line 28: | Line 28: | ||
In the Copenhagen Interpretation, <math>\Pr(x)</math> is the probability of finding the particle at location <math>x</math>. In Universal Wave Function interpretations (e.g. MWI), <math>\Pr(x)</math> can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using [[realspace|position-space]] or [[reciprocal-space|momentum-space]]: | In the Copenhagen Interpretation, <math>\Pr(x)</math> is the probability of finding the particle at location <math>x</math>. In Universal Wave Function interpretations (e.g. MWI), <math>\Pr(x)</math> can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using [[realspace|position-space]] or [[reciprocal-space|momentum-space]]: | ||
:<math>\psi(x) \longleftrightarrow \tilde{\psi} (k) </math> | :<math>\psi(x) \longleftrightarrow \tilde{\psi} (k) </math> | ||
+ | |||
+ | These representations can be inter-related (c.f. [[Fourier transform]]): | ||
+ | :<math> \psi(x) = \frac{1}{\sqrt{2 \pi}} \int \tilde{\psi}(k) e^{i k x } \mathrm{d}k </math> | ||
+ | :<math> \tilde{\psi}(k) = \frac{1}{\sqrt{2 \pi}} \int {\psi}(x) e^{-i k x } \mathrm{d}x </math> | ||
==See Also== | ==See Also== | ||
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics] | * [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics] |
Revision as of 15:50, 12 October 2014
Postulates
Wavefunction
A quantum system is completely specified by its Wave Function:
The wavefunction is typically normalized:
Integral Notation | Dirac Notation |
---|---|
The distribution of the particle described by is given by:
Integral Notation | Dirac Notation |
---|---|
In the Copenhagen Interpretation, is the probability of finding the particle at location . In Universal Wave Function interpretations (e.g. MWI), can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:
These representations can be inter-related (c.f. Fourier transform):