Difference between revisions of "Reciprocal-space mapping"

From GISAXS
Jump to: navigation, search
(See Also)
(See Also)
Line 8: Line 8:
 
* [http://scripts.iucr.org/cgi-bin/paper?S0909049505030815 Reciprocal space mapping and single-crystal scattering rods] D.-M. Smilgies, D. R. Blasini, S. Hotta and H. Yanagi ''J. Synchrotron Rad.'' '''2005''', 12, 807-811. [http://dx.doi.org/10.1107/S0909049505030815 doi: 10.1107/S0909049505030815]
 
* [http://scripts.iucr.org/cgi-bin/paper?S0909049505030815 Reciprocal space mapping and single-crystal scattering rods] D.-M. Smilgies, D. R. Blasini, S. Hotta and H. Yanagi ''J. Synchrotron Rad.'' '''2005''', 12, 807-811. [http://dx.doi.org/10.1107/S0909049505030815 doi: 10.1107/S0909049505030815]
 
* [http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2736193 X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene] Hiroyuki Yoshida, Katsuhiko Inaba and Naoki Sato ''Appl. Phys. Lett.'' '''2007''', 90, 181930. [http://dx.doi.org/10.1063/1.2736193 doi: 10.1063/1.2736193]
 
* [http://scitation.aip.org/content/aip/journal/apl/90/18/10.1063/1.2736193 X-ray diffraction reciprocal space mapping study of the thin film phase of pentacene] Hiroyuki Yoshida, Katsuhiko Inaba and Naoki Sato ''Appl. Phys. Lett.'' '''2007''', 90, 181930. [http://dx.doi.org/10.1063/1.2736193 doi: 10.1063/1.2736193]
 +
* [http://scripts.iucr.org/cgi-bin/paper?te5002 Nebula: reconstruction and visualization of scattering data in reciprocal space] A. Reiten, D. Chernyshov and R. H. Mathiesen ''J. Appl. Cryst.'' '''2015''', 48. [http://dx.doi.org/10.1107/S1600576715001788 doi: 10.1107/S1600576715001788]

Revision as of 12:48, 23 February 2015

Reciprocal-space mapping (RSM) refers to a suite of scattering methods wherein the three-dimensional reciprocal-space of the sample is reconstructed by iteratively measuring a variety of two-dimensional 'slices' through the space. A given x-ray scattering experiment probes a 2D plane through reciprocal-space (actually a curved surface, known as the Ewald sphere). By reorienting the sample, multiple 'slices' through reciprocal-space can be obtained. These slices can then be combined to yield the full, 3D reciprocal-space.

See Also