Difference between revisions of "Talk:Geometry:WAXS 3D"

From GISAXS
Jump to: navigation, search
(Check of Total Magnitude #2: Doesn't work)
Line 74: Line 74:
  
 
     & = \begin{alignat}{2} [  
 
     & = \begin{alignat}{2} [  
       & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2  \\  
+
       & x^2 \cos^2 \phi_g - 2 x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2  \\  
 
       & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\  
 
       & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\  
 
       & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\  
 
       & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\  
 
       & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\  
 
       & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\  
       & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
+
       & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>

Revision as of 16:06, 13 January 2016

Check of Total Magnitude #1: Doesn't work

Check of Total Magnitude #2: Doesn't work

We define:

And calculate:

Grouping and rearranging: