|
|
Line 103: |
Line 103: |
| & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\ | | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( v_{2y} )\\ |
| | | |
− | | + | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g - 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \\ |
− | & = ? \\
| + | & = 2 d^{\prime} \left( d^{\prime} - x \sin \phi_g - \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right) \\ |
− | & = ? \\
| |
− | & = ? \\
| |
− | & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \\ | |
− | & = 2 d^{\prime} \left( d^{\prime} - x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right) \\ | |
| \left( \frac{q}{k} \right)^2 | | \left( \frac{q}{k} \right)^2 |
| & = 2 \left( 1 - \frac{x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g )}{d^{\prime} } \right) | | & = 2 \left( 1 - \frac{x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g )}{d^{\prime} } \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 16:20, 13 January 2016
Check of Total Magnitude #1: Doesn't work
Check of Total Magnitude #2: Doesn't work
We define:
And calculate:
Grouping and rearranging: