|
|
Line 20: |
Line 20: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 | + | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \\ |
| + | & = \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - 1 |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 15:25, 15 April 2019
Compute
So:
Or equivalently:
Scratch/working (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: