Difference between revisions of "Science Agents"

From GISAXS
Jump to: navigation, search
(Science Agents)
Line 1: Line 1:
==Science Agents==
+
=Science Agents=
 
* 2024-01-13: [https://arxiv.org/abs/2401.06949 ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization] ([https://www.youtube.com/watch?v=N6qMMwJ8hKQ video])
 
* 2024-01-13: [https://arxiv.org/abs/2401.06949 ORGANA: A Robotic Assistant for Automated Chemistry Experimentation and Characterization] ([https://www.youtube.com/watch?v=N6qMMwJ8hKQ video])
 
* 2024-06-19: [https://arxiv.org/abs/2406.13163 LLMatDesign: Autonomous Materials Discovery with Large Language Models]
 
* 2024-06-19: [https://arxiv.org/abs/2406.13163 LLMatDesign: Autonomous Materials Discovery with Large Language Models]
Line 10: Line 10:
 
* 2024-12-11: Google [https://blog.google/products/gemini/google-gemini-deep-research/ Deep Research]
 
* 2024-12-11: Google [https://blog.google/products/gemini/google-gemini-deep-research/ Deep Research]
  
 +
=AI Use-cases for Science=
 
==Autonomous Ideation==
 
==Autonomous Ideation==
 
* 2024-09: [https://arxiv.org/abs/2409.14202 Mining Causality: AI-Assisted Search for Instrumental Variables]
 
* 2024-09: [https://arxiv.org/abs/2409.14202 Mining Causality: AI-Assisted Search for Instrumental Variables]
 
==Data Visualization==
 
* 2024-10: [https://www.microsoft.com/en-us/research/blog/data-formulator-exploring-how-ai-can-help-analysts-create-rich-data-visualizations/ Data Formulator: Create Rich Visualization with AI iteratively] ([https://www.microsoft.com/en-us/research/video/data-formulator-create-rich-visualization-with-ai-iteratively/ video], [https://github.com/microsoft/data-formulator code])
 
* [https://julius.ai/ Julius AI]: Analyze your data with computational AI
 
  
 
==Adapting LLMs to Science==
 
==Adapting LLMs to Science==
Line 55: Line 52:
 
* 2023-12: [https://doi.org/10.1038/s41586-023-06792-0 Autonomous chemical research with large language models] (Coscientist)
 
* 2023-12: [https://doi.org/10.1038/s41586-023-06792-0 Autonomous chemical research with large language models] (Coscientist)
  
==Impact of AI in Science==
+
=Impact of AI in Science=
 
* 2024-11: [https://aidantr.github.io/files/AI_innovation.pdf Artificial Intelligence, Scientific Discovery, and Product Innovation]
 
* 2024-11: [https://aidantr.github.io/files/AI_innovation.pdf Artificial Intelligence, Scientific Discovery, and Product Innovation]
  
==See Also==
+
=Related Tools=
 +
==Data Visualization==
 +
* 2024-10: [https://www.microsoft.com/en-us/research/blog/data-formulator-exploring-how-ai-can-help-analysts-create-rich-data-visualizations/ Data Formulator: Create Rich Visualization with AI iteratively] ([https://www.microsoft.com/en-us/research/video/data-formulator-create-rich-visualization-with-ai-iteratively/ video], [https://github.com/microsoft/data-formulator code])
 +
* [https://julius.ai/ Julius AI]: Analyze your data with computational AI
 +
 
 +
=See Also=
 
* [[AI agents]]
 
* [[AI agents]]
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum
 
* [https://nanobot.chat/ Nanobot.chat]: Intelligent AI for the labnetwork @ mtl.mit.edu forum

Revision as of 15:21, 13 December 2024

Science Agents

AI Use-cases for Science

Autonomous Ideation

Adapting LLMs to Science

AI/ML Methods tailored to Science

Symbolic Regression

Literature Discovery

Commercial

AI/ML Methods co-opted for Science

Mechanistic Interpretability

Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.

Uncertainty

AI Science Systems

Inorganic Materials Discovery

Chemistry

Impact of AI in Science

Related Tools

Data Visualization

See Also