Difference between revisions of "Quantum Mechanics"

From GISAXS
Jump to: navigation, search
(Postulates)
(Wavefunction)
Line 26: Line 26:
 
|}
 
|}
  
In the Copenhagen Interpretation, <math>\Pr(x)</math> is the probability of finding the particle at location <math>x</math>. In Universal Wave Function interpretations (e.g. MWI), <math>\Pr(x)</math> can be thought of as the spatial distribution of the particle.
+
In the Copenhagen Interpretation, <math>\Pr(x)</math> is the probability of finding the particle at location <math>x</math>. In Universal Wave Function interpretations (e.g. MWI), <math>\Pr(x)</math> can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using [[realspace|position-space]] or [[reciprocal-space|momentum-space]]:
 +
:<math>\psi(x) \longleftrightarrow \tilde{\psi} (k) </math>
  
 
==See Also==
 
==See Also==
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]
 
* [http://en.wikipedia.org/wiki/Quantum_mechanics Wikipedia: Quantum Mechanics]

Revision as of 15:44, 12 October 2014

Postulates

Wavefunction

A quantum system is completely specified by its Wave Function:

The wavefunction is typically normalized:

Integral Notation Dirac Notation
     

The distribution of the particle described by is given by:

Integral Notation Dirac Notation
     

In the Copenhagen Interpretation, is the probability of finding the particle at location . In Universal Wave Function interpretations (e.g. MWI), can be thought of as the spatial distribution of the particle. The wavefunction contains all the information one can know about a system. It can thus be thought of as 'being' the particle/system in question. However, the wavefunction can be described in an infinite number of different ways. That is, there is not a unique basis for describing the wavefunction. So, for instance, one can describe the wavefunction using position-space or momentum-space:

See Also