Difference between revisions of "Talk:Extra:Intersecting planes"
KevinYager (talk | contribs) |
KevinYager (talk | contribs) |
||
Line 54: | Line 54: | ||
\cos\alpha \cos \phi \\ | \cos\alpha \cos \phi \\ | ||
\sin\alpha \cos \phi\end{bmatrix} | \sin\alpha \cos \phi\end{bmatrix} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | |||
+ | |||
+ | ==Generalized distance between two vectors== | ||
+ | '''Warning: Errors below''' (this is just intermediate/working stuff) | ||
+ | |||
+ | Imagine [[reciprocal-space]] [[scattering]] that is a ring; more specifically a pseudo-toroid with Gaussian-like decay. The intensity overall is: | ||
+ | ::<math> | ||
+ | I = \exp \left [ -(q_{rr}-q_0)^2/(2 \sigma_q^2) \right ] \exp \left [ -q_{rz}^2/(2 \sigma_q^2) \right ] | ||
+ | </math> | ||
+ | Where we use the subscript ''r'' to denote the reciprocal-space coordinate system, and <math>\scriptstyle q_{rr} = \sqrt{q_{rx}^2+q_{ry}^2}</math>. The plane of the [[detector]] (i.e. the [[Ewald sphere|Ewald plane]]) is denoted by ''d'': | ||
+ | ::<math> | ||
+ | \mathbf{v}_{d} = \begin{bmatrix} q_{dx} & q_{dy} & 0 \end{bmatrix} | ||
+ | </math> | ||
+ | We set the symmetry axis in realspace (detector coordinate system) to be the <math>\scriptstyle x</math>-axis. The reciprocal-space is tilted by <math>\scriptstyle \chi_0</math> (about the <math>\scriptstyle y</math>-axis), before the 'powder' rotation about the <math>\scriptstyle x</math>-axis (where <math>\scriptstyle \alpha</math> goes from <math>\scriptstyle -\pi</math> to <math>\scriptstyle +\pi</math>). Consider an initial vector: | ||
+ | ::<math> | ||
+ | \mathbf{v}_{d0} = \begin{bmatrix} q \sin \phi & q \cos \phi & 0 \end{bmatrix} | ||
+ | </math> | ||
+ | The 1st rotation (about <math>\scriptstyle y</math>-axis by <math>\scriptstyle \chi_0</math>) involves: | ||
+ | ::<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathbf{v}_{d1} & = R_y(\chi_0) \mathbf{v}_{d0} \\ | ||
+ | & = \begin{bmatrix} | ||
+ | \cos \chi_0 & 0 & \sin \chi_0 \\ | ||
+ | 0 & 1 & 0 \\ | ||
+ | -\sin \chi_0 & 0 & \cos \chi_0 \\ | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | q \sin \phi \\ | ||
+ | q \cos \phi \\ | ||
+ | 0 \\ | ||
+ | \end{bmatrix} \\ | ||
+ | & = \begin{bmatrix} | ||
+ | q \sin \phi \cos \chi_0 \\ | ||
+ | q \cos \phi \\ | ||
+ | - q \sin \phi \sin \chi_0 \\ | ||
+ | \end{bmatrix} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | Consider a 2nd rotation around the vector (normal to the detector plane) ('''Warning: This is erroneous since the alpha rotation is just another phi rotation.'''): | ||
+ | ::<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathbf{n}_{d1} & = R_y(\chi_0) \mathbf{n}_{d0} \\ | ||
+ | & = \begin{bmatrix} | ||
+ | \cos \chi_0 & 0 & \sin \chi_0 \\ | ||
+ | 0 & 1 & 0 \\ | ||
+ | -\sin \chi_0 & 0 & \cos \chi_0 \\ | ||
+ | \end{bmatrix} | ||
+ | \begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | \end{bmatrix} \\ | ||
+ | & = \begin{bmatrix} | ||
+ | \sin \chi_0 \\ | ||
+ | 0 \\ | ||
+ | \cos \chi_0 \\ | ||
+ | \end{bmatrix} | ||
+ | \end{alignat} | ||
+ | </math> | ||
+ | So the second rotation yields: | ||
+ | ::<math> | ||
+ | \begin{alignat}{2} | ||
+ | \mathbf{v}_{d2} & = | ||
+ | \begin{bmatrix} u(ux +wz)(1-\cos \alpha) + x \cos \alpha + -wy \sin \alpha \\ | ||
+ | y \cos \alpha + (wx-uz) \sin \alpha\\ | ||
+ | w(ux+wz)(1-\cos \alpha) + z \cos \alpha + uy \sin \alpha \end{bmatrix} \\ | ||
+ | & = | ||
+ | \begin{bmatrix} \sin \chi_0 (\sin \chi_0 q \sin \phi \cos \chi_0 - \cos \chi_0 q \sin \phi \sin \chi_0)(1-\cos \alpha) + q \sin \phi \cos \chi_0 \cos \alpha + - \cos \chi_0 q \cos \phi \sin \alpha \\ | ||
+ | q \cos \phi \cos \alpha + (\cos \chi_0 q \sin \phi \cos \chi_0 + \sin \chi_0 q \sin \phi \sin \chi_0) \sin \alpha\\ | ||
+ | \cos \chi_0(\sin \chi_0 q \sin \phi \cos \chi_0 - \cos \chi_0 q \sin \phi \sin \chi_0)(1-\cos \alpha) + - q \sin \phi \sin \chi_0 \cos \alpha + \sin \chi_0 q \cos \phi \sin \alpha \end{bmatrix} \\ | ||
+ | & = | ||
+ | q \begin{bmatrix} \sin^2 \chi_0 \sin \phi (\cos \chi_0 - \cos \chi_0 )(1-\cos \alpha) + \sin \phi \cos \chi_0 \cos \alpha - \cos \chi_0 \cos \phi \sin \alpha \\ | ||
+ | \cos \phi \cos \alpha + \sin \phi (\cos^2 \chi_0 + \sin^2 \chi_0 ) \sin \alpha\\ | ||
+ | \cos \chi_0 \sin \chi_0 \sin \phi (\cos \chi_0 - \cos \chi_0 )(1-\cos \alpha) - \sin \phi \sin \chi_0 \cos \alpha + \sin \chi_0 \cos \phi \sin \alpha \end{bmatrix} \\ | ||
+ | |||
+ | & = | ||
+ | q \begin{bmatrix} \cos \chi_0 ( \sin \phi \cos \alpha - \cos \phi \sin \alpha ) \\ | ||
+ | \cos \phi \cos \alpha + \sin \phi \sin \alpha\\ | ||
+ | -\sin \chi_0 ( \sin \phi \cos \alpha - \cos \phi \sin \alpha ) \end{bmatrix} \\ | ||
+ | |||
\end{alignat} | \end{alignat} | ||
</math> | </math> |
Latest revision as of 16:26, 23 December 2015
Rotate about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
Rotate about
In general, rotation of a vector about an arbitrary unit-vector gives (1, 2):
In this particular case, we thus expect:
Generalized distance between two vectors
Warning: Errors below (this is just intermediate/working stuff)
Imagine reciprocal-space scattering that is a ring; more specifically a pseudo-toroid with Gaussian-like decay. The intensity overall is:
Where we use the subscript r to denote the reciprocal-space coordinate system, and . The plane of the detector (i.e. the Ewald plane) is denoted by d:
We set the symmetry axis in realspace (detector coordinate system) to be the -axis. The reciprocal-space is tilted by (about the -axis), before the 'powder' rotation about the -axis (where goes from to ). Consider an initial vector:
The 1st rotation (about -axis by ) involves:
Consider a 2nd rotation around the vector (normal to the detector plane) (Warning: This is erroneous since the alpha rotation is just another phi rotation.):
So the second rotation yields: