|
|
Line 15: |
Line 15: |
| \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ | | \frac{z \cos \theta_f}{\sqrt{d^2+z^2 \cos^2 \theta_f }} \end{bmatrix} \\ |
| | | |
| + | \end{alignat} |
| + | </math> |
| + | Note that <math>\cos \theta_f = d^2/\sqrt{d^2+x^2}</math>, and <math>\cos^2 \theta_f = d^4/(d^2+x^2)</math> so: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \frac{1}{\sqrt{d^2+z^2 \cos^2 \theta_f }} |
| + | & = \frac{1}{\sqrt{d^2+z^2 \left( d^4/(d^2+x^2) \right) }} \\ |
| + | & = \frac{1}{\sqrt{d^2} \sqrt{((d^2+x^2)+z^2 d^2)/(d^2+x^2) }} \\ |
| + | & = \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\ |
| | | |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
| + | And: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | \mathbf{q} |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x d}{\sqrt{d^2+x^2 }} \frac{\sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \\ |
| + | \frac{d}{\sqrt{d^2+x^2}} \frac{d \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} - 1 \\ |
| + | \frac{z \left( d^2/\sqrt{d^2+x^2} \right) \sqrt{d^2+x^2}}{d \sqrt{d^2 + x^2 + z^2 d^2 }} \end{bmatrix} \\ |
| + | |
| + | & = \frac{2 \pi}{\lambda} \begin{bmatrix} |
| + | \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2 }} \\ |
| + | \frac{d }{\sqrt{x^2 + d^2 + z^2 d^2 }} - 1 \\ |
| + | \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2 }} \end{bmatrix} \\ |
| + | |
| | | |
| + | \end{alignat} |
| + | </math> |
| | | |
| \frac{1}{\sqrt{1+\left(u\right)^2}} \\ | | \frac{1}{\sqrt{1+\left(u\right)^2}} \\ |
Revision as of 11:14, 13 January 2016
Working results 1
Note that , and so:
And:
\frac{1}{\sqrt{1+\left(u\right)^2}} \\
\frac{u}{\sqrt{1+\left(u\right)^2}} \\
Working results 2 (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: