|
|
Line 49: |
Line 49: |
| \begin{alignat}{2} | | \begin{alignat}{2} |
| \left( \frac{q}{k} \right)^2 | | \left( \frac{q}{k} \right)^2 |
− | & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 d^2 } }{\sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 + \left( \frac{z d }{\sqrt{x^2 + d^2 + z^2 d^2 }} \right)^2 \\ | + | & = \left( \frac{x}{ \sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{d - \sqrt{x^2 + d^2 + z^2 } }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 + \left( \frac{z }{\sqrt{x^2 + d^2 + z^2 }} \right)^2 \\ |
− | & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 d^2 }\right)^2 + z^2d^2 }{x^2 + d^2 + z^2d^2} \\ | + | & = \frac{x^2 + \left( d - \sqrt{x^2 + d^2 + z^2 }\right)^2 + z^2 }{x^2 + d^2 + z^2} \\ |
− | & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} + x^2 + d^2 + z^2 d^2 \right) + z^2d^2 }{x^2 + d^2 + z^2d^2} \\ | + | & = \frac{x^2 + \left( d^2 - 2d \sqrt{x^2 + d^2 + z^2 } + x^2 + d^2 + z^2 \right) + z^2 }{x^2 + d^2 + z^2} \\ |
− | & = \frac{2 x^2 + 2 d^2 + 2 z^2d^2 - 2d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\ | + | & = \frac{2 x^2 + 2 d^2 + 2 z^2 - 2d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ |
− | & = 2 \frac{( x^2 + d^2 + z^2d^2 ) - d \sqrt{x^2 + d^2 + z^2 d^2} }{x^2 + d^2 + z^2d^2} \\ | + | & = 2 \frac{( x^2 + d^2 + z^2 ) - d \sqrt{x^2 + d^2 + z^2 } }{x^2 + d^2 + z^2} \\ |
− | & = 2 \left( 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2d^2}} \right) | + | & = 2 \left( 1 - \frac{d}{\sqrt{x^2 + d^2 + z^2}} \right) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 12:04, 13 January 2016
Working results 1
Note that , and so:
And:
As a check:
Working results 2 (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: