Difference between revisions of "Talk:Geometry:WAXS 3D"

From GISAXS
Jump to: navigation, search
(Created page with "====Check==== :<math> \begin{alignat}{2} \left ( \frac{q}{k} \right )^2 d^{\prime 2} & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \si...")
 
(Check)
Line 1: Line 1:
 
====Check====
 
====Check====
 +
We define:
 +
::<math>
 +
\begin{alignat}{2}
 +
d^{\prime} & = \sqrt{x^2 + d^2 + z^2} = \| \mathbf{v}_1 \| \\
 +
( v_{2y} ) & = ( d \cos \theta_g - z \sin \theta_g ) \\
 +
( v_{2y} )^2 & = ( d \cos \theta_g - z \sin \theta_g )^2 \\
 +
    & = d^2 \cos^2 \theta_g -dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g
 +
\end{alignat}
 +
</math>
 +
 +
And solve:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 +
q^2 & = [ (q_x)^2 + (q_y)^2 + (q_z)^2 ] \\
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
     & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2  ] \end{alignat}  \\
 
     & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2  ] \end{alignat}  \\
 +
    & = \begin{alignat}{2} [ & \left( x \cos \phi_g -\sin \phi_g ( v_{2y} ) \right)^2 \\ & + \left( x \sin \phi_g + \cos \phi_g ( v_{2y} ) - d^{\prime} \right)^2 \\ & + \left( d \sin \theta_g + z \cos \theta_g \right)^2  ] \end{alignat}  \\
  
    & = \begin{alignat}{2} [
 
      & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) + \sin^2 \phi_g ( d \cos \theta_g - z \sin \theta_g )^2  \\
 
      & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - d^{\prime} x \sin \phi_g \\
 
      & + \cos \phi_g ( d \cos \theta_g - z \sin \theta_g )x \sin \phi_g + \cos^2 \phi_g ( d \cos \theta_g - z \sin \theta_g )^2 - d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) \\
 
      & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) + d^{\prime 2} \\
 
      & + d^2 \sin^2 \theta_g + 2 d \sin \theta_g z \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\
 
 
    & = \begin{alignat}{2} [
 
      & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( d \cos \theta_g - z \sin \theta_g ) + \sin^2 \phi_g ( d \cos \theta_g - z \sin \theta_g )^2  \\
 
      & + x^2 \sin^2 \phi_g + 2 x \sin \phi_g \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - 2 d^{\prime} x \sin \phi_g \\
 
      & + \cos^2 \phi_g ( d \cos \theta_g - z \sin \theta_g )^2 - 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) + d^{\prime 2} \\
 
      & + d^2 \sin^2 \theta_g + 2 d \sin \theta_g z \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\
 
 
    & = \begin{alignat}{2} [
 
      & x^2  - x \sin \phi_g \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) + ( d \cos \theta_g - z \sin \theta_g )^2  \\
 
      & + 2 x \sin \phi_g \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) - 2 d^{\prime} x \sin \phi_g \\
 
      & - 2 d^{\prime} \cos \phi_g ( d \cos \theta_g - z \sin \theta_g ) + d^{\prime 2} \\
 
      & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\
 
 
    & = \begin{alignat}{2} [
 
      & x^2  + d^2 \cos^2 \theta_g - 2 dz \cos \theta_g \sin \theta_g + z^2 \sin^2 \theta_g  \\
 
      & + ( - x \sin \phi_g \cos \phi_g + 2 x \sin \phi_g \cos \phi_g - 2 d^{\prime} \cos \phi_g )( d \cos \theta_g - z \sin \theta_g ) \\
 
      & - 2 d^{\prime} x \sin \phi_g \\
 
      & + d^{\prime 2} \\
 
      & + d^2 \sin^2 \theta_g + 2 d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g ] \end{alignat} \\
 
 
    & = \begin{alignat}{2} [
 
      & d^{\prime 2} + x^2  + d^2 + z^2 - 2 dz \cos \theta_g \sin \theta_g  \\
 
      & + ( x \sin \phi_g \cos \phi_g - 2 d^{\prime} \cos \phi_g )( d \cos \theta_g - z \sin \theta_g ) \\
 
      & + 2 d z \sin \theta_g \cos \theta_g - 2 d^{\prime} x \sin \phi_g  ] \end{alignat} \\
 
 
    & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + ( x \sin \phi_g \cos \phi_g - 2 d^{\prime} \cos \phi_g )( d \cos \theta_g - z \sin \theta_g ) \\
 
 
    & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + ( x \sin \phi_g - 2 d^{\prime} )\cos \phi_g( d \cos \theta_g - z \sin \theta_g ) \\
 
  
  
 +
    & = ? \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\
 
     & = ? \\

Revision as of 15:03, 13 January 2016

Check

We define:

And solve: