Difference between revisions of "Talk:Geometry:WAXS 3D"

From GISAXS
Jump to: navigation, search
(Check)
(Check)
Line 35: Line 35:
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
\left ( \frac{q}{k} \right )^2 d^{\prime 2}
 
     & = \begin{alignat}{2} [  
 
     & = \begin{alignat}{2} [  
       & x^2 \cos^2 \phi_g - x \cos \phi_g \sin \phi_g ( v_{2y} ) + \sin^2 \phi_g ( v_{2y} )^2  \\  
+
       & x^2 + ( v_{2y} )^2  \\  
       & + x^2 \sin^2 \phi_g + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} x \sin \phi_g \\  
+
       & - 2 d^{\prime} x \sin \phi_g \\  
       & + x \sin \phi_g \cos \phi_g ( v_{2y} ) + \cos^2 \phi_g ( v_{2y} )^2 - d^{\prime} \cos \phi_g ( v_{2y} ) \\  
+
       & + x \sin \phi_g \cos \phi_g ( v_{2y} ) - d^{\prime} \cos \phi_g ( v_{2y} ) \\  
       & - d^{\prime} x \sin \phi_g - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\  
+
       & - d^{\prime} \cos \phi_g ( v_{2y} ) + d^{\prime 2} \\  
 
       & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
 
       & + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
  
 +
    & = \begin{alignat}{2} [
 +
      & x^2  + ( d^2 \cos^2 \theta_g -dz \cos \theta_g \sin\theta_g + z^2 \sin^2 \theta_g )  \\
 +
      & - 2 d^{\prime} x \sin \phi_g \\
 +
      & + (x \sin \phi_g - d^{\prime} - d^{\prime}) \cos \phi_g ( v_{2y} )  \\
 +
      & + d^{\prime 2} + d^2 \sin^2 \theta_g + d z \sin \theta_g \cos \theta_g + z^2 \cos^2 \theta_g  ] \end{alignat}  \\
  
 +
    & = \begin{alignat}{2} [
 +
      & d^{\prime 2} + x^2  + d^2 + z^2    \\
 +
      & - 2 d^{\prime} x \sin \phi_g \\
 +
      & + (x \sin \phi_g - 2 d^{\prime}) \cos \phi_g ( v_{2y} ) ] \end{alignat}  \\
 +
 +
    & = 2 d^{\prime 2} - 2 d^{\prime} x \sin \phi_g + (x \sin \phi_g - 2 d^{\prime}) \cos \phi_g ( v_{2y} )  \\
  
 
     & = ? \\
 
     & = ? \\

Revision as of 15:25, 13 January 2016

Check

We define:

And calculate:

Grouping and rearranging: