Difference between revisions of "Talk:Geometry:WAXS 3D"
KevinYager (talk | contribs) (Blanked the page) |
KevinYager (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | <source lang="python" line> | ||
+ | #!/usr/bin/python | ||
+ | # Quick/rough Python code to check (numerically) the derivations... | ||
+ | import numpy as np | ||
+ | for i in range(10): | ||
+ | |||
+ | x = np.random.uniform(-10,10) | ||
+ | z = np.random.uniform(-10,10) | ||
+ | d = np.random.uniform(10,1000) | ||
+ | |||
+ | |||
+ | phi = np.random.uniform(-np.pi, +np.pi) | ||
+ | theta = np.random.uniform(0, +np.pi) | ||
+ | |||
+ | print( 'x{:+05.1f} d{:+06.1f} z{:+05.1f} phi{:+06.1f} theta{:+06.1f}'.format(x, d, z, np.degrees(theta), np.degrees(phi)) ) | ||
+ | |||
+ | #k = 1.0 | ||
+ | |||
+ | v2y = d*np.cos(theta) - z*np.sin(theta) | ||
+ | dprime = np.sqrt( np.square(x) + np.square(d) + np.square(z) ) | ||
+ | |||
+ | qx = x*np.cos(phi) - np.sin(phi)*v2y | ||
+ | qy = x*np.sin(phi) + np.cos(phi)*v2y - dprime | ||
+ | qz = d*np.sin(theta) + z*np.cos(theta) | ||
+ | |||
+ | q = np.sqrt( np.square(qx) + np.square(qy) + np.square(qz) ) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | print( ' pieces qx{:g} qy{:g} qz{:g} q{:g}'.format(qx, qy, qz, q) ) | ||
+ | #print( '{}{:g}'.format( ' '*50, q) ) | ||
+ | |||
+ | if False: | ||
+ | l1 = np.square(qx) | ||
+ | l2 = np.square(qy) | ||
+ | l3 = np.square(qz) | ||
+ | qalt2 = l1 + l2 + l3 | ||
+ | |||
+ | if False: | ||
+ | l1 = np.square(x*np.cos(phi) - np.sin(phi)*(d*np.cos(theta) - z*np.sin(theta))) | ||
+ | l2 = np.square(x*np.sin(phi) + np.cos(phi)*(d*np.cos(theta) - z*np.sin(theta)) - dprime) | ||
+ | l3 = np.square(d*np.sin(theta) + z*np.cos(theta)) | ||
+ | qalt2 = l1 + l2 + l3 | ||
+ | |||
+ | if True: | ||
+ | l1 = np.square(x)*np.square(np.cos(phi)) - 2*x*np.cos(phi)*np.sin(phi)*v2y + np.square(np.sin(phi))*np.square(v2y) | ||
+ | l2 = np.square(x)*np.square(np.sin(phi)) + x*np.sin(phi)*np.cos(phi)*v2y - dprime*x*np.sin(phi) | ||
+ | l3 = x*np.sin(phi)*np.cos(phi)*v2y + np.square(np.cos(phi))*np.square(v2y) - dprime*np.cos(phi)*v2y | ||
+ | l4 = -1*dprime*x*np.sin(phi) - dprime*np.cos(phi)*v2y + np.square(dprime) | ||
+ | l5 = np.square(d)*np.square(np.sin(theta)) + 2*d*z*np.sin(theta)*np.cos(theta) + np.square(z)*np.square(np.cos(theta)) | ||
+ | |||
+ | qalt2 = l1 + l2 + l3 + l4 + l5 | ||
+ | |||
+ | if True: | ||
+ | |||
+ | qalt2 = 2*dprime*( dprime - x*np.sin(phi) - np.cos(phi)*v2y ) | ||
+ | |||
+ | |||
+ | qalt = np.sqrt(qalt2) | ||
+ | |||
+ | print( ' qalt {:g}'.format(qalt) ) | ||
+ | print( '{}{:g}'.format( ' '*50, q-qalt) ) | ||
+ | |||
+ | </source> |
Latest revision as of 16:22, 13 January 2016
#!/usr/bin/python # Quick/rough Python code to check (numerically) the derivations... import numpy as np for i in range(10): x = np.random.uniform(-10,10) z = np.random.uniform(-10,10) d = np.random.uniform(10,1000) phi = np.random.uniform(-np.pi, +np.pi) theta = np.random.uniform(0, +np.pi) print( 'x{:+05.1f} d{:+06.1f} z{:+05.1f} phi{:+06.1f} theta{:+06.1f}'.format(x, d, z, np.degrees(theta), np.degrees(phi)) ) #k = 1.0 v2y = d*np.cos(theta) - z*np.sin(theta) dprime = np.sqrt( np.square(x) + np.square(d) + np.square(z) ) qx = x*np.cos(phi) - np.sin(phi)*v2y qy = x*np.sin(phi) + np.cos(phi)*v2y - dprime qz = d*np.sin(theta) + z*np.cos(theta) q = np.sqrt( np.square(qx) + np.square(qy) + np.square(qz) ) print( ' pieces qx{:g} qy{:g} qz{:g} q{:g}'.format(qx, qy, qz, q) ) #print( '{}{:g}'.format( ' '*50, q) ) if False: l1 = np.square(qx) l2 = np.square(qy) l3 = np.square(qz) qalt2 = l1 + l2 + l3 if False: l1 = np.square(x*np.cos(phi) - np.sin(phi)*(d*np.cos(theta) - z*np.sin(theta))) l2 = np.square(x*np.sin(phi) + np.cos(phi)*(d*np.cos(theta) - z*np.sin(theta)) - dprime) l3 = np.square(d*np.sin(theta) + z*np.cos(theta)) qalt2 = l1 + l2 + l3 if True: l1 = np.square(x)*np.square(np.cos(phi)) - 2*x*np.cos(phi)*np.sin(phi)*v2y + np.square(np.sin(phi))*np.square(v2y) l2 = np.square(x)*np.square(np.sin(phi)) + x*np.sin(phi)*np.cos(phi)*v2y - dprime*x*np.sin(phi) l3 = x*np.sin(phi)*np.cos(phi)*v2y + np.square(np.cos(phi))*np.square(v2y) - dprime*np.cos(phi)*v2y l4 = -1*dprime*x*np.sin(phi) - dprime*np.cos(phi)*v2y + np.square(dprime) l5 = np.square(d)*np.square(np.sin(theta)) + 2*d*z*np.sin(theta)*np.cos(theta) + np.square(z)*np.square(np.cos(theta)) qalt2 = l1 + l2 + l3 + l4 + l5 if True: qalt2 = 2*dprime*( dprime - x*np.sin(phi) - np.cos(phi)*v2y ) qalt = np.sqrt(qalt2) print( ' qalt {:g}'.format(qalt) ) print( '{}{:g}'.format( ' '*50, q-qalt) )