|
|
Line 143: |
Line 143: |
| </math> | | </math> |
| | | |
− | ===TBD=== | + | |
− | We take advantage of a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>: | + | |
| + | |
| + | ===Equation=== |
| + | We take advantage of a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>. The DWBA equation can thus be expanded as: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) & = | |
| + | T_i T_f F_{+1} |
| + | + T_i R_f F_{-2} |
| + | + R_i T_f F_{+2} |
| + | + R_i R_f F_{-1} | ^{2} \\ |
| + | |
| + | & \begin{align} |
| + | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ |
| + | & && + T_i R_i T_f^2 F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
| + | |
| + | & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ |
| + | & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ |
| + | |
| + | & + R_i^2 T_f^2 | F(+Q_{z2}) |^2 && + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ |
| + | & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| + | |
| + | & + R_i^2 R_f^2 | F(-Q_{z1}) |^2 && + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ |
| + | & && + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ |
| + | |
| + | \end{align} \\ |
| + | |
| + | \end{align} |
| + | </math> |
| | | |
| ==Breaking into components== | | ==Breaking into components== |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:
Breaking into components
The experimental data can be broken into contributions from the transmitted channel and reflected channel :
We define the ratio between the channels to be:
Such that one can compute the two components from:
and: