|
|
Line 158: |
Line 158: |
| | | |
| & \begin{align} | | & \begin{align} |
− | = \,\, & T_i^2 T_f^2 | F(+Q_{z1}) |^2 && + T_i^2 T_f R_f F(+Q_{z1})F(-Q_{z2}) \\ | + | = \,\, & |T_i T_f|^2 | F_{+1} |^2 && + T_i^2 T_f R_f F_{+1}F_{-2} \\ |
− | & && + T_i R_i T_f^2 F(+Q_{z1})F(+Q_{z2}) + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ | + | & && + T_i R_i T_f^2 F_{+1}F_{+2} + T_i R_i T_f R_f F_{+1} F_{-1} \\ |
| | | |
− | & + T_i^2 R_f^2 | F(-Q_{z2}) |^2 && + T_i^2T_fR_f F(+Q_{z1}) F(-Q_{z2}) \\ | + | & + |T_i R_f|^2 | F_{-2} |^2 && + T_i^2T_fR_f F_{+1} F_{-2} \\ |
− | & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + T_i R_i R_f^2 F(-Q_{z1}) F(-Q_{z2}) \\ | + | & && + T_i R_i T_f R_f F_{+2}F_{-2} + T_i R_i R_f^2 F_{-1} F_{-2} \\ |
| | | |
− | & + R_i^2 T_f^2 | F(+Q_{z2}) |^2 && + T_i R_i T_f^2 F(+Q_{z1}) F(+Q_{z2}) \\ | + | & + |R_i T_f|^2 | F_{+2} |^2 && + T_i R_i T_f^2 F_{+1} F_{+2} \\ |
− | & && + T_i R_i T_f R_f F(+Q_{z2})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ | + | & && + T_i R_i T_f R_f F_{+2}F_{-2} + R_i^2 T_f R_f F_{-1} F_{+2} \\ |
| | | |
− | & + R_i^2 R_f^2 | F(-Q_{z1}) |^2 && + T_i R_i T_f R_f F(+Q_{z1}) F(-Q_{z1}) \\ | + | & + |R_i R_f|^2 | F_{-1} |^2 && + T_i R_i T_f R_f F_{+1} F_{-1} \\ |
− | & && + T_i R_i R_f^2 F(-Q_{z1})F(-Q_{z2}) + R_i^2 T_f R_f F(-Q_{z1}) F(+Q_{z2}) \\ | + | & && + T_i R_i R_f^2 F_{-1}F_{-2} + R_i^2 T_f R_f F_{-1} F_{+2} \\ |
| | | |
| \end{align} \\ | | \end{align} \\ |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:
Breaking into components
The experimental data can be broken into contributions from the transmitted channel and reflected channel :
We define the ratio between the channels to be:
Such that one can compute the two components from:
and: