Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Expansion)
(Expansion)
Line 177: Line 177:
 
===Simplification===
 
===Simplification===
 
We can rearrange to:
 
We can rearrange to:
 +
 +
<math>
 +
\begin{align}
 +
I_d(q_{z}) = \, \, &  |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\
 +
 +
    & + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\
 +
 +
    & + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\
 +
 +
    & + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\
 +
 +
    & + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^*\\
 +
 +
    & + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\
 +
    & + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} \\
 +
    & +  T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} \\
 +
    & +  T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\
 +
 +
= \, \, &  |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\
 +
 +
    & + |T_i|^2 [ T_f R_f^* F_{+1}F_{-2}^* + T_f^*R_f F_{+1}^* F_{-2} ] \\
 +
 +
    & + |T_f|^2 [ T_i R_i^*  F_{+1}F_{+2}^* + T_i^* R_i F_{+1}^* F_{+2} ] \\
 +
 +
    & + |R_i|^2 [ T_f R_f^* F_{-1}^* F_{+2} + T_f^* R_f F_{-1} F_{+2}^* ] \\
 +
 +
    & + |R_f|^2 [ T_i R_i^*  F_{-1}^* F_{-2} + T_i^* R_i F_{-1}F_{-2}^* ]\\
 +
 +
    & + [ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} ] \\
 +
    & + [ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} ] \\
 +
 +
\end{align}
 +
</math>
 +
 +
We define <math>I_{+1}=|F_{+1}|^2</math>, and note that for any complex number <math>c</math>, it is true that <math>c+c^*=2 \mathrm{Re}[c]</math>. Thus:
 +
 +
<math>
 +
\begin{align}
 +
I_d(q_{z})
 +
= \, \, &  |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\
 +
 +
    & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\
 +
 +
    & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^*  F_{+1}F_{+2}^* ] \\
 +
 +
    & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\
 +
 +
    & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^*  F_{-1}^* F_{-2} ]\\
 +
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\
 +
 +
= \, \, &  |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\
 +
 +
    & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^*  F_{+1}F_{+2}^* ] \\
 +
 +
    & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^*  F_{-1}^* F_{-2} ]\\
 +
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\
 +
\end{align}
 +
</math>
  
 
==Breaking into components==
 
==Breaking into components==

Revision as of 08:38, 13 March 2018

DWBA Equation in thin film

Using the notation for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:




Equation

We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:

Simplification

We can rearrange to:

We define , and note that for any complex number , it is true that . Thus:

Breaking into components

The experimental data can be broken into contributions from the transmitted channel and reflected channel :

We define the ratio between the channels to be:

Such that one can compute the two components from:

and: