|
|
Line 240: |
Line 240: |
| | | |
| ==Breaking into components== | | ==Breaking into components== |
− | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,Tc}(qz)</math> and reflected channel <math>I_{d,Rc}(qz)</math>: | + | The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,\mathrm{Tc}}(qz)</math> and reflected channel <math>I_{d,\mathrm{Rc}}(qz)</math>: |
| | | |
| <math> | | <math> |
Line 246: |
Line 246: |
| I_d(q_{z}) | | I_d(q_{z}) |
| & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ | | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\ |
− | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,Tc}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,Rc}) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Tc}}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Rc}}) \\ |
− | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,Rc}(q_z) \\ | + | & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,\mathrm{Tc}}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,\mathrm{Rc}}(q_z) \\ |
− | & = |Tc|^2 I_{d,Tc}(q_z) + |Rc|^2 I_{d,Rc}(q_z) \\ | + | & = |Tc|^2 I_{d,\mathrm{Tc}}(q_z) + |Rc|^2 I_{d,\mathrm{Rc}}(q_z) \\ |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 256: |
Line 256: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | w | + | w (q_z) |
− | & = \frac{ I_{d,Tc}(q_z) }{ I_{d,Tc}(q_z) + I_{d,Rc}(q_z) } | + | & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) } |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 265: |
Line 265: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 ( I_{d,Rc}(q_z) ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
− | I_d(q_{z}) & = |Tc|^2 ( I_{d,Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,Tc}(q_z) - w I_{d,Tc}(q_z) }{w} \right ) \\ | + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w} \right ) \\ |
− | I_d(q_{z}) & = I_{d,Tc}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ | + | I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2 + |Rc|^2 \frac{ 1}{w} - |Rc|^2 \frac{w }{w} \right ) \\ |
− | I_{d,Tc}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ | + | I_{d,\mathrm{Tc}}(q_z) & = \frac{ I_d(q_{z}) }{ |Tc|^2 + \frac{ |Rc|^2 }{w} - |Rc|^2 } \\ |
| \end{align} | | \end{align} |
| </math> | | </math> |
Line 277: |
Line 277: |
| <math> | | <math> |
| \begin{align} | | \begin{align} |
− | I_{d,Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,Tc}(q_z) }{|Rc|^2} | + | I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\ |
| + | & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z) |
| + | \end{align} |
| + | </math> |
| + | |
| + | or: |
| + | |
| + | <math> |
| + | \begin{align} |
| + | I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
| + | & = |Tc|^2 \left( \frac{w}{1-w} I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\ |
| + | |
| \end{align} | | \end{align} |
| </math> | | </math> |
DWBA Equation in thin film
Using the notation for compactness, the DWBA equation inside a thin film can be written:
Expansion (incorrect)
WARNING: This incorrectly ignores the complex components.
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
The equation can thus be expanded as:
Simplification
We can rearrange to:
We can rewrite in a more compact form using the notation and :
Expansion
Terms
If one expands the of the DWBA, one obtains 16 terms:
Equation
We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:
Simplification
We can rearrange to:
We define , and note that for any complex number , it is true that . Thus:
Breaking into components
The experimental data can be broken into contributions from the transmitted channel and reflected channel :
We define the ratio between the channels to be:
Such that one can compute the two components from:
and:
or: