|
|
Line 15: |
Line 15: |
| & = \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \\ | | & = \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \\ |
| & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 | | & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 |
| + | \end{alignat} |
| + | </math> |
| + | Or equivalently: |
| + | :<math> |
| + | \begin{alignat}{2} |
| + | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Revision as of 15:23, 15 April 2019
Compute
So:
Or equivalently:
Scratch/working (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: