|
|
Line 12: |
Line 12: |
| \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ | | \frac{q_x}{k} & = \sin \theta_f \cos \alpha_f \\ |
| \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ | | \theta_f & = \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \\ |
− | q_y & = \cos \theta_f \cos \alpha_f - 1 \\ | + | \frac{q_y}{k} & = \cos \theta_f \cos \alpha_f - 1 \\ |
− | & = \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \\
| + | q_y & = k \left ( \cos \left( \sin^{-1} \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right] \right ) \cos \left ( \sin^{-1} \left[ \frac{q_z}{k} \right] \right ) - 1 \right )\\ |
− | & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 | + | & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\cos \alpha_f} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Line 20: |
Line 20: |
| :<math> | | :<math> |
| \begin{alignat}{2} | | \begin{alignat}{2} |
− | q_y & = \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \\ | + | q_y & = k \left ( \sqrt{ 1 - \left[ \frac{q_x}{k} \frac{1}{\sqrt{1-[q_z/k]^2}} \right]^2 } \sqrt{ 1 - \left[ \frac{q_z}{k} \right]^2 } - 1 \right ) \\ |
− | & = \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - 1 | + | & = k \sqrt{ 1 - \frac{q_x^2}{k^2 (1-q_z^2/k^2) } } \sqrt{ 1 - \frac{q_z^2}{k^2} } - k |
| \end{alignat} | | \end{alignat} |
| </math> | | </math> |
Latest revision as of 15:29, 15 April 2019
Compute
So:
Or equivalently:
Scratch/working (contains errors)
As a check of these results, consider:
Where we used:
And, we further note that:
Continuing: