Talk:Geometry:WAXS 3D
From GISAXS
Revision as of 15:14, 13 January 2016 by
KevinYager
(
talk
|
contribs
)
(
→
Check
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to:
navigation
,
search
Check
We define:
d
′
=
x
2
+
d
2
+
z
2
=
‖
v
1
‖
(
v
2
y
)
=
(
d
cos
θ
g
−
z
sin
θ
g
)
(
v
2
y
)
2
=
(
d
cos
θ
g
−
z
sin
θ
g
)
2
=
d
2
cos
2
θ
g
−
d
z
cos
θ
g
sin
θ
g
+
z
2
sin
2
θ
g
{\displaystyle {\begin{alignedat}{2}d^{\prime }&={\sqrt {x^{2}+d^{2}+z^{2}}}=\|\mathbf {v} _{1}\|\\(v_{2y})&=(d\cos \theta _{g}-z\sin \theta _{g})\\(v_{2y})^{2}&=(d\cos \theta _{g}-z\sin \theta _{g})^{2}\\&=d^{2}\cos ^{2}\theta _{g}-dz\cos \theta _{g}\sin \theta _{g}+z^{2}\sin ^{2}\theta _{g}\end{alignedat}}}
And calculate:
q
2
=
[
(
q
x
)
2
+
(
q
y
)
2
+
(
q
z
)
2
]
(
q
k
)
2
d
′
2
=
[
(
x
cos
ϕ
g
−
sin
ϕ
g
(
d
cos
θ
g
−
z
sin
θ
g
)
)
2
+
(
x
sin
ϕ
g
+
cos
ϕ
g
(
d
cos
θ
g
−
z
sin
θ
g
)
−
d
′
)
2
+
(
d
sin
θ
g
+
z
cos
θ
g
)
2
]
=
[
(
x
cos
ϕ
g
−
sin
ϕ
g
(
v
2
y
)
)
2
+
(
x
sin
ϕ
g
+
cos
ϕ
g
(
v
2
y
)
−
d
′
)
2
+
(
d
sin
θ
g
+
z
cos
θ
g
)
2
]
=
[
x
2
cos
2
ϕ
g
−
x
cos
ϕ
g
sin
ϕ
g
(
v
2
y
)
+
sin
2
ϕ
g
(
v
2
y
)
2
+
x
2
sin
2
ϕ
g
+
x
sin
ϕ
g
cos
ϕ
g
(
v
2
y
)
−
d
′
x
sin
ϕ
g
+
x
sin
ϕ
g
cos
ϕ
g
(
v
2
y
)
+
cos
2
ϕ
g
(
v
2
y
)
2
−
d
′
cos
ϕ
g
(
v
2
y
)
−
d
′
x
sin
ϕ
g
−
d
′
cos
ϕ
g
(
v
2
y
)
+
d
′
2
+
d
2
sin
2
θ
g
+
d
z
sin
θ
g
cos
θ
g
+
z
2
cos
2
θ
g
]
{\displaystyle {\begin{alignedat}{2}q^{2}&=[(q_{x})^{2}+(q_{y})^{2}+(q_{z})^{2}]\\\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&\left(x\cos \phi _{g}-\sin \phi _{g}(v_{2y})\right)^{2}\\&+\left(x\sin \phi _{g}+\cos \phi _{g}(v_{2y})-d^{\prime }\right)^{2}\\&+\left(d\sin \theta _{g}+z\cos \theta _{g}\right)^{2}]\end{alignedat}}\\&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(v_{2y})+\sin ^{2}\phi _{g}(v_{2y})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(v_{2y})-d^{\prime }x\sin \phi _{g}\\&+x\sin \phi _{g}\cos \phi _{g}(v_{2y})+\cos ^{2}\phi _{g}(v_{2y})^{2}-d^{\prime }\cos \phi _{g}(v_{2y})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(v_{2y})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\\end{alignedat}}}
Grouping and rearranging:
(
q
k
)
2
d
′
2
=
[
x
2
cos
2
ϕ
g
−
x
cos
ϕ
g
sin
ϕ
g
(
v
2
y
)
+
sin
2
ϕ
g
(
v
2
y
)
2
+
x
2
sin
2
ϕ
g
+
x
sin
ϕ
g
cos
ϕ
g
(
v
2
y
)
−
d
′
x
sin
ϕ
g
+
x
sin
ϕ
g
cos
ϕ
g
(
v
2
y
)
+
cos
2
ϕ
g
(
v
2
y
)
2
−
d
′
cos
ϕ
g
(
v
2
y
)
−
d
′
x
sin
ϕ
g
−
d
′
cos
ϕ
g
(
v
2
y
)
+
d
′
2
+
d
2
sin
2
θ
g
+
d
z
sin
θ
g
cos
θ
g
+
z
2
cos
2
θ
g
]
=
?
=
?
=
?
=
2
d
′
2
−
2
d
′
x
sin
ϕ
g
+
2
d
′
cos
ϕ
g
(
d
cos
θ
g
−
z
sin
θ
g
)
=
2
d
′
(
d
′
−
x
sin
ϕ
g
+
cos
ϕ
g
(
d
cos
θ
g
−
z
sin
θ
g
)
)
(
q
k
)
2
=
2
(
1
−
x
sin
ϕ
g
+
cos
ϕ
g
(
d
cos
θ
g
−
z
sin
θ
g
)
d
′
)
{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}d^{\prime 2}&={\begin{alignedat}{2}[&x^{2}\cos ^{2}\phi _{g}-x\cos \phi _{g}\sin \phi _{g}(v_{2y})+\sin ^{2}\phi _{g}(v_{2y})^{2}\\&+x^{2}\sin ^{2}\phi _{g}+x\sin \phi _{g}\cos \phi _{g}(v_{2y})-d^{\prime }x\sin \phi _{g}\\&+x\sin \phi _{g}\cos \phi _{g}(v_{2y})+\cos ^{2}\phi _{g}(v_{2y})^{2}-d^{\prime }\cos \phi _{g}(v_{2y})\\&-d^{\prime }x\sin \phi _{g}-d^{\prime }\cos \phi _{g}(v_{2y})+d^{\prime 2}\\&+d^{2}\sin ^{2}\theta _{g}+dz\sin \theta _{g}\cos \theta _{g}+z^{2}\cos ^{2}\theta _{g}]\end{alignedat}}\\&=?\\&=?\\&=?\\&=2d^{\prime 2}-2d^{\prime }x\sin \phi _{g}+2d^{\prime }\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\\&=2d^{\prime }\left(d^{\prime }-x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})\right)\\\left({\frac {q}{k}}\right)^{2}&=2\left(1-{\frac {x\sin \phi _{g}+\cos \phi _{g}(d\cos \theta _{g}-z\sin \theta _{g})}{d^{\prime }}}\right)\end{alignedat}}}
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Permanent link
Page information