Talk:Geometry:TSAXS 3D
From GISAXS
Revision as of 15:20, 15 April 2019 by
KevinYager
(
talk
|
contribs
)
(
→
Compute q_y
)
(
diff
)
← Older revision
|
Latest revision
(
diff
) |
Newer revision →
(
diff
)
Jump to:
navigation
,
search
Compute
q
y
{\displaystyle q_{y}}
q
=
[
q
x
q
y
q
z
]
=
k
[
sin
θ
f
cos
α
f
cos
θ
f
cos
α
f
−
1
sin
α
f
]
{\displaystyle {\begin{alignedat}{2}\mathbf {q} &={\begin{bmatrix}q_{x}\\q_{y}\\q_{z}\end{bmatrix}}\\&=k{\begin{bmatrix}\sin \theta _{f}\cos \alpha _{f}\\\cos \theta _{f}\cos \alpha _{f}-1\\\sin \alpha _{f}\end{bmatrix}}\end{alignedat}}}
So:
α
f
=
sin
−
1
[
q
z
k
]
q
x
k
=
sin
θ
f
cos
α
f
θ
f
=
sin
−
1
[
q
x
k
1
cos
α
f
]
q
y
=
cos
θ
f
cos
α
f
−
1
=
cos
(
sin
−
1
[
q
x
k
1
cos
α
f
]
)
cos
(
sin
−
1
[
q
z
k
]
)
−
1
=
1
−
[
q
x
k
1
cos
α
f
]
2
1
−
[
q
z
k
]
2
−
1
{\displaystyle {\begin{alignedat}{2}\alpha _{f}&=\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\\{\frac {q_{x}}{k}}&=\sin \theta _{f}\cos \alpha _{f}\\\theta _{f}&=\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\\q_{y}&=\cos \theta _{f}\cos \alpha _{f}-1\\&=\cos \left(\sin ^{-1}\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]\right)\cos \left(\sin ^{-1}\left[{\frac {q_{z}}{k}}\right]\right)-1\\&={\sqrt {1-\left[{\frac {q_{x}}{k}}{\frac {1}{\cos \alpha _{f}}}\right]^{2}}}{\sqrt {1-\left[{\frac {q_{z}}{k}}\right]^{2}}}-1\end{alignedat}}}
Scratch/working (contains errors)
As a check of these results, consider:
q
=
q
x
2
+
q
y
2
+
q
z
2
=
2
π
λ
sin
2
θ
f
cos
2
α
f
+
(
cos
θ
f
cos
α
f
−
1
)
2
+
sin
2
α
f
(
q
k
)
2
=
(
sin
θ
f
)
2
(
cos
α
f
)
2
+
(
cos
θ
f
cos
α
f
−
1
)
2
+
(
sin
α
f
)
2
=
(
x
/
d
1
+
(
x
/
d
)
2
)
2
(
cos
α
f
)
2
+
(
cos
θ
f
cos
α
f
−
1
)
2
+
(
z
cos
θ
f
/
d
1
+
(
z
cos
θ
f
/
d
)
2
)
2
=
(
x
d
2
+
x
2
)
2
(
cos
α
f
)
2
+
(
cos
θ
f
cos
α
f
−
1
)
2
+
(
z
cos
θ
f
d
2
+
z
2
cos
2
θ
f
)
2
=
x
2
d
2
+
x
2
(
cos
α
f
)
2
+
(
cos
θ
f
cos
α
f
−
1
)
2
+
z
2
cos
2
θ
f
d
2
+
z
2
cos
2
θ
f
=
x
2
d
2
+
x
2
d
4
d
2
+
z
2
cos
2
θ
f
+
(
cos
θ
f
d
2
d
2
+
z
2
cos
2
θ
f
−
1
)
2
+
z
2
cos
2
θ
f
d
2
+
z
2
cos
2
θ
f
{\displaystyle {\begin{alignedat}{2}q&={\sqrt {q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}}\\&={\frac {2\pi }{\lambda }}{\sqrt {\sin ^{2}\theta _{f}\cos ^{2}\alpha _{f}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\sin ^{2}\alpha _{f}}}\\\left({\frac {q}{k}}\right)^{2}&=(\sin \theta _{f})^{2}(\cos \alpha _{f})^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+(\sin \alpha _{f})^{2}\\&=\left({\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\right)^{2}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\left({\frac {z\cos \theta _{f}/d}{\sqrt {1+(z\cos \theta _{f}/d)^{2}}}}\right)^{2}\\&=\left({\frac {x}{\sqrt {d^{2}+x^{2}}}}\right)^{2}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+\left({\frac {z\cos \theta _{f}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}\right)^{2}\\&={\frac {x^{2}}{d^{2}+x^{2}}}\left(\cos \alpha _{f}\right)^{2}+\left(\cos \theta _{f}\cos \alpha _{f}-1\right)^{2}+{\frac {z^{2}\cos ^{2}\theta _{f}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}\\&={\frac {x^{2}}{d^{2}+x^{2}}}{\frac {d^{4}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}+\left(\cos \theta _{f}{\frac {d^{2}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\right)^{2}+{\frac {z^{2}\cos ^{2}\theta _{f}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}\end{alignedat}}}
Where we used:
sin
(
arctan
[
u
]
)
=
u
1
+
u
2
sin
θ
f
=
sin
(
arctan
[
x
/
d
]
)
=
x
/
d
1
+
(
x
/
d
)
2
=
x
d
2
+
x
2
{\displaystyle {\begin{alignedat}{2}\sin(\arctan[u])&={\frac {u}{\sqrt {1+u^{2}}}}\\\sin \theta _{f}&=\sin(\arctan[x/d])\\&={\frac {x/d}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {x}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}
And, we further note that:
cos
(
arctan
[
u
]
)
=
1
1
+
u
2
cos
θ
f
=
1
1
+
(
x
/
d
)
2
=
d
2
d
2
+
x
2
{\displaystyle {\begin{alignedat}{2}\cos(\arctan[u])&={\frac {1}{\sqrt {1+u^{2}}}}\\\cos \theta _{f}&={\frac {1}{\sqrt {1+(x/d)^{2}}}}\\&={\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}\end{alignedat}}}
Continuing:
(
q
k
)
2
=
x
2
d
2
+
x
2
d
4
d
2
+
z
2
cos
2
θ
f
+
(
d
2
d
2
+
x
2
d
2
d
2
+
z
2
cos
2
θ
f
−
1
)
2
+
z
2
d
2
+
z
2
cos
2
θ
f
d
4
d
2
+
x
2
=
d
4
x
2
+
z
2
(
d
2
+
x
2
)
(
d
2
+
z
2
cos
2
θ
f
)
+
(
d
4
(
d
2
+
x
2
)
(
d
2
+
z
2
cos
2
θ
f
)
−
1
)
2
=
d
4
x
2
+
d
4
z
2
d
4
+
d
2
x
2
+
d
4
z
2
+
(
d
4
d
4
+
d
2
x
2
+
d
4
z
2
−
1
)
2
=
d
2
x
2
+
d
2
z
2
d
2
+
x
2
+
d
2
z
2
+
(
d
8
d
4
+
d
2
x
2
+
d
4
z
2
−
2
d
4
d
4
+
d
2
x
2
+
d
4
z
2
+
1
)
=
d
2
x
2
+
d
2
z
2
d
2
+
x
2
+
d
2
z
2
+
d
6
d
2
+
x
2
+
d
2
z
2
−
2
d
3
d
2
+
x
2
+
d
2
z
2
+
1
=
d
2
x
2
+
d
2
z
2
+
d
6
−
2
d
3
d
2
+
x
2
+
d
2
z
2
+
d
2
+
x
2
+
d
2
z
2
d
2
+
x
2
+
d
2
z
2
=
d
6
+
d
2
+
d
2
x
2
+
x
2
+
2
d
2
z
2
−
2
d
3
d
2
+
x
2
+
d
2
z
2
d
2
+
x
2
+
d
2
z
2
=
?
=
?
=
d
2
+
x
2
+
z
2
−
d
2
d
2
+
x
2
+
z
2
=
1
2
(
1
−
d
d
2
+
x
2
+
z
2
)
q
=
4
π
λ
sin
(
θ
s
)
{\displaystyle {\begin{alignedat}{2}\left({\frac {q}{k}}\right)^{2}&={\frac {x^{2}}{d^{2}+x^{2}}}{\frac {d^{4}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}+\left({\frac {d^{2}}{\sqrt {d^{2}+x^{2}}}}{\frac {d^{2}}{\sqrt {d^{2}+z^{2}\cos ^{2}\theta _{f}}}}-1\right)^{2}+{\frac {z^{2}}{d^{2}+z^{2}\cos ^{2}\theta _{f}}}{\frac {d^{4}}{d^{2}+x^{2}}}\\&=d^{4}{\frac {x^{2}+z^{2}}{(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}+\left({\frac {d^{4}}{\sqrt {(d^{2}+x^{2})(d^{2}+z^{2}\cos ^{2}\theta _{f})}}}-1\right)^{2}\\&={\frac {d^{4}x^{2}+d^{4}z^{2}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}+\left({\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}-1\right)^{2}\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+\left({\frac {d^{8}}{d^{4}+d^{2}x^{2}+d^{4}z^{2}}}-2{\frac {d^{4}}{\sqrt {d^{4}+d^{2}x^{2}+d^{4}z^{2}}}}+1\right)\\&={\frac {d^{2}x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}+{\frac {d^{6}}{d^{2}+x^{2}+d^{2}z^{2}}}-2{\frac {d^{3}}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}}+1\\&={\frac {d^{2}x^{2}+d^{2}z^{2}+d^{6}-2d^{3}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}+d^{2}+x^{2}+d^{2}z^{2}}{d^{2}+x^{2}+d^{2}z^{2}}}\\&={\frac {d^{6}+d^{2}+d^{2}x^{2}+x^{2}+2d^{2}z^{2}-2d^{3}{\sqrt {d^{2}+x^{2}+d^{2}z^{2}}}}{d^{2}+x^{2}+d^{2}z^{2}}}\\&=?\\&=?\\&={\frac {{\sqrt {d^{2}+x^{2}+z^{2}}}-d}{2{\sqrt {d^{2}+x^{2}+z^{2}}}}}\\&={\frac {1}{2}}\left(1-{\frac {d}{\sqrt {d^{2}+x^{2}+z^{2}}}}\right)\\q&={\frac {4\pi }{\lambda }}\sin \left(\theta _{s}\right)\end{alignedat}}}
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information