Talk:Unit cell
Revision as of 11:18, 13 April 2020 by KevinYager (talk | contribs)
Extra math expressions
A given real-space cubic lattice will have dimensions:
Such that the position of any particular cell within the infinite lattice is:
Where h, k, and l are indices. The corresponding inverse-space lattice would be:
In the case where :
TBD: Reciprocal vector components
Calculate q_hkl generally
def q_hkl(self, h, k, l): """Determines the position in reciprocal space for the given reflection.""" # The 'unitcell' coordinate system assumes: # a-axis lies along x-axis # b-axis is in x-y plane # c-axis is vertical (or at a tilt, depending on beta) # Convert from (unitcell) Cartesian to (unitcell) fractional coordinates reduced_volume = sqrt( 1 - (cos(self.alpha))**2 - (cos(self.beta))**2 - (cos(self.gamma))**2 + 2*cos(self.alpha)*cos(self.beta)*cos(self.gamma) ) #volume = reduced_volume*self.lattice_spacing_a*self.lattice_spacing_b*self.lattice_spacing_c a = ( self.lattice_spacing_a , \ 0.0 , \ 0.0 ) b = ( self.lattice_spacing_b*cos(self.gamma) , \ self.lattice_spacing_b*sin(self.gamma) , \ 0.0 ) c = ( self.lattice_spacing_c*cos(self.beta) , \ self.lattice_spacing_c*( cos(self.alpha) - cos(self.beta)*cos(self.gamma) )/( sin(self.gamma) ) , \ self.lattice_spacing_c*reduced_volume/( sin(self.gamma) ) ) # Compute (unitcell) reciprocal-space lattice vectors volume = np.dot( a, np.cross(b,c) ) u = np.cross( b, c ) / volume # Along qx v = np.cross( c, a ) / volume # Along qy w = np.cross( a, b ) / volume # Along qz qhkl_vector = 2*pi*( h*u + k*v + l*w ) qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 ) return (qhkl, qhkl_vector) def q_hkl_length(self, h, k, l): qhkl, qhkl_vector = self.q_hkl(h,k,l) #qhkl = sqrt( qhkl_vector[0]**2 + qhkl_vector[1]**2 + qhkl_vector[2]**2 ) return qhkl