Science Agents
Revision as of 12:43, 25 November 2024 by KevinYager (talk | contribs) (Created page with "==Science Agents== * 2024-06-19: [https://arxiv.org/abs/2406.13163 LLMatDesign: Autonomous Materials Discovery with Large Language Models] * 2024-08-12: [https://sakana.ai/ Sa...")
Contents
Science Agents
- 2024-06-19: LLMatDesign: Autonomous Materials Discovery with Large Language Models
- 2024-08-12: Sakana AI: AI Scientist; The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery (code)
- 2024-09-09: SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning (code)
- 2024-09-11: PaperQA2: Language Models Achieve Superhuman Synthesis of Scientific Knowledge (𝕏 post, code)
- 2024-10-17: Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems
- 2024-10-28: Large Language Model-Guided Prediction Toward Quantum Materials Synthesis
Autonomous Ideation
Data Visualization
- 2024-10: Data Formulator: Create Rich Visualization with AI iteratively (video, code)
- Julius AI: Analyze your data with computational AI
Adapting LLMs to Science
- 2023-06: Domain-specific chatbots for science using embeddings
- 2024-10: Personalization of Large Language Models: A Survey
- 2024-11: Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
AI/ML Methods tailored to Science
Symbolic Regression
Literature Discovery
Commercial
- Cusp AI: Materials/AI
AI/ML Methods co-opted for Science
Mechanistic Interpretability
Train large model on science data. Then apply mechanistic interpretability (e.g. sparse autoencoders, SAE) to the feature/activation space.
- Mechanistic interpretability for protein language models (visualizer, code, SAE)
- Markov Bio: Through a Glass Darkly: Mechanistic Interpretability as the Bridge to End-to-End Biology (quick description, background info on recent bio progress)
Uncertainty
- 2024-10: entropix: Entropy Based Sampling and Parallel CoT Decoding
- 2024-10: Taming Overconfidence in LLMs: Reward Calibration in RLHF
AI Science Systems
Inorganic Materials Discovery
- 2023-11: Scaling deep learning for materials discovery
- 2023-11: An autonomous laboratory for the accelerated synthesis of novel materials
- 2024-10: Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models (code, datasets, checkpoints, blogpost)
Chemistry
- 2023-12: Autonomous chemical research with large language models (Coscientist)
Impact of AI in Science
See Also
- AI agents
- Nanobot.chat: Intelligent AI for the labnetwork @ mtl.mit.edu forum