AI Agents
Revision as of 12:45, 25 November 2024 by KevinYager (talk | contribs) (Created page with " =Reviews & Perspectives= ===Published=== * 2024-04: [https://arxiv.org/abs/2404.05221 LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Larg...")
Contents
- 1 Reviews & Perspectives
- 2 AI Assistants
- 3 Advanced Workflows
- 4 Corporate AI Agent Ventures
- 5 Increasing AI Agent Intelligence
- 5.1 Proactive Search
- 5.2 Inference Time Compute
- 5.2.1 Methods
- 5.2.2 In context learning (ICL), search, and other inference-time methods
- 5.2.3 Inference-time Sampling
- 5.2.4 Inference-time Gradient
- 5.2.5 Self-prompting
- 5.2.6 In-context thought
- 5.2.7 Naive multi-LLM (verification, majority voting, best-of-N, etc.)
- 5.2.8 Multi-LLM (multiple comparisons, branching, etc.)
- 5.2.9 Iteration (e.g. neural-like layered blocks)
- 5.2.10 Iterative reasoning via graphs
- 5.2.11 Monte Carlo Tree Search (MCTS)
- 5.2.12 Other Search
- 5.2.13 Scaling
- 5.2.14 Theory
- 5.2.15 Expending compute works
- 5.2.16 Code for Inference-time Compute
- 5.3 Memory
- 5.4 Tool Use
- 5.5 Multi-agent Effort (and Emergent Intelligence)
- 5.6 ML-like Optimization of LLM Setup
- 6 Multi-agent orchestration
- 7 Optimization
- 8 See Also
Reviews & Perspectives
Published
- 2024-04: LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models (code)
- 2024-08: From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
- 2024-09: Towards a Science Exocortex
- 2024-09: Large Language Model-Based Agents for Software Engineering: A Survey
- 2024-09: Agents in Software Engineering: Survey, Landscape, and Vision
Continually updating
- OpenThought - System 2 Research Links
- Awesome LLM Strawberry (OpenAI o1): Collection of research papers & blogs for OpenAI Strawberry(o1) and Reasoning
Analysis/Opinions
- LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks
- Cutting AI Assistant Costs by Up to 77.8%: The Power of Enhancing LLMs with Business Logic
AI Assistants
Components of AI Assistants
Information Retrieval
- See also RAG.
- 2024-10: Agentic Information Retrieval
Open-source
- Khoj (code): self-hostable AI assistant
- RAGapp: Agentic RAG for enterprise
- STORM: Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking
- Can write (e.g.) Wikipedia-style articles
- code
- Preprint: Assisting in Writing Wikipedia-like Articles From Scratch with Large Language Models
Personalities/Personas
- 2023-10: Generative Agents: Interactive Simulacra of Human Behavior
- 2024-11: Microsoft TinyTroupe 🤠🤓🥸🧐: LLM-powered multiagent persona simulation for imagination enhancement and business insights
- 2024-11: Generative Agent Simulations of 1,000 People (code)
Specific Uses for AI Assistants
Computer Use
Science Agents
See Science Agents.
LLM-as-judge
- List of papers.
- LLM Evaluation doesn't need to be complicated
- Evaluating the Effectiveness of LLM-Evaluators (aka LLM-as-Judge)
- 2024-10: Agent-as-a-Judge: Evaluate Agents with Agents
Advanced Workflows
- Salesforce DEI: meta-system that leverages a diversity of SWE agents
- Sakana AI: AI Scientist
- SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
Software Development Workflows
Several paradigms of AI-assisted coding have arisen:
- Manual, human driven
- AI-aided through chat/dialogue, where the human asks for code and then copies it into the project
- API calls to an LLM, which generates code and inserts the file into the project
- LLM-integration into the IDE
- AI-assisted IDE, where the AI generates and manages the dev environment
- Replit
- Aider (code): Pair programming on commandline
- Pythagora
- StackBlitz bolt.new
- Cline (formerly Claude Dev)
- Prompt-to-product
- Semi-autonomous software engineer agents
For a review of the current state of software-engineering agentic approaches, see:
- 2024-08: From LLMs to LLM-based Agents for Software Engineering: A Survey of Current, Challenges and Future
- 2024-09: Large Language Model-Based Agents for Software Engineering: A Survey
- 2024-09: Agents in Software Engineering: Survey, Landscape, and Vision
Corporate AI Agent Ventures
Mundane Workflows and Capabilities
- Payman AI: AI to Human platform that allows AI to pay people for what it needs
- VoiceFlow: Build customer experiences with AI
- Mistral AI: genAI applications
- Taskade: Task/milestone software with AI agent workflows
- Covalent: Building a Multi-Agent Prompt Refining Application
Inference-compute Reasoning
Agentic Systems
- Topology AI
- Cognition AI: Devin software engineer (14% SWE-Agent)
- Honeycomb (22% SWE-Agent)
Increasing AI Agent Intelligence
Proactive Search
Compute expended after training, but before inference.
Training Data (Data Refinement, Synthetic Data)
- C.f. image datasets:
- 2024-09: Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale
- 2024-10: Data Cleaning Using Large Language Models
- Updating list of links: Synthetic Data of LLMs, by LLMs, for LLMs
Generate consistent plans/thoughts
- 2024-08: Mutual Reasoning Makes Smaller LLMs Stronger Problem-Solvers (code)
- (Microsoft) rStar is a self-play mutual reasoning approach. A small model adds to MCTS using some defined reasoning heuristics. Mutually consistent trajectories can be emphasized.
- 2024-09: Self-Harmonized Chain of Thought
- Produce refined chain-of-thought style solutions/prompts for diverse problems. Given a large set of problems/questions, first aggregated semantically, then apply zero-shot chain-of-thought to each problem. Then cross-pollinate between proposed solutions to similar problems, looking for refined and generalize solutions.
Sampling
- 2024-11: Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding (code)
Automated prompt generation
Distill inference-time-compute into model
- 2023-10: Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning (U. Maryland, Adobe)
- 2023-11: Implicit Chain of Thought Reasoning via Knowledge Distillation (Harvard, Microsoft, Hopkins)
- 2024-02: Grandmaster-Level Chess Without Search (Google DeepMind)
- 2024-07: Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models
- 2024-07: BOND: Aligning LLMs with Best-of-N Distillation
- 2024-09: Training Language Models to Self-Correct via Reinforcement Learning (Google DeepMind)
- 2024-10: Thinking LLMs: General Instruction Following with Thought Generation
- 2024-10: Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
CoT reasoning model
- 2024-09: OpenAI o1
- 2024-10: O1 Replication Journey: A Strategic Progress Report – Part 1 (code): Attempt by Walnut Plan to reproduce o1-like in-context reasoning
- 2024-11: DeepSeek-R1-Lite-Preview reasoning model
- 2024-11: Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions
Scaling
- 2024-08: Smaller, Weaker, Yet Better: Training LLM Reasoners via Compute-Optimal Sampling (Google DeepMind)
- 2024-11: Scaling Laws for Pre-training Agents and World Models
Inference Time Compute
Methods
In context learning (ICL), search, and other inference-time methods
- 2023-03: Reflexion: Language Agents with Verbal Reinforcement Learning
- 2023-05: VOYAGER: An Open-Ended Embodied Agent with Large Language Models
- 2024-04: Many-Shot In-Context Learning
- 2024-08: Automated Design of Agentic Systems
- 2024-09: Planning In Natural Language Improves LLM Search For Code Generation
Inference-time Sampling
- 2024-10: entropix: Entropy Based Sampling and Parallel CoT Decoding
- 2024-10: TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search and Best-of-N Sampling
- 2024-11: Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs
Inference-time Gradient
Self-prompting
- 2023-05: Reprompting: Automated Chain-of-Thought Prompt Inference Through Gibbs Sampling
- 2023-11: Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
In-context thought
- 2022-01: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (Google Brain)
- 2023-05: Tree of Thoughts: Deliberate Problem Solving with Large Language Models (Google DeepMind)
- 2024-05: Faithful Logical Reasoning via Symbolic Chain-of-Thought
- 2024-06: A Tree-of-Thoughts to Broaden Multi-step Reasoning across Languages
- 2024-09: To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning
- 2024-09: Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning (Agnostiq, Toronto)
- 2024-09: Logic-of-Thought: Injecting Logic into Contexts for Full Reasoning in Large Language Models
- 2024-10: A Theoretical Understanding of Chain-of-Thought: Coherent Reasoning and Error-Aware Demonstration (failed reasoning traces can improve CoT)
- 2024-10: Tree of Problems: Improving structured problem solving with compositionality
- 2023-01/2024-10: A Survey on In-context Learning
Naive multi-LLM (verification, majority voting, best-of-N, etc.)
- 2023-06: LLM-Blender: Ensembling Large Language Models with Pairwise Ranking and Generative Fusion (code)
- 2023-12: Dynamic Voting for Efficient Reasoning in Large Language Models
- 2024-04: Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment
- 2024-08: Dynamic Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling
- 2024-11: Multi-expert Prompting Improves Reliability, Safety, and Usefulness of Large Language Models
Multi-LLM (multiple comparisons, branching, etc.)
- 2024-10: Thinking LLMs: General Instruction Following with Thought Generation
- 2024-11: Mixtures of In-Context Learners: Multiple "experts", each with a different set of in-context examples; combine outputs at the level of next-token-prediction
- 2024-11: LLaVA-o1: Let Vision Language Models Reason Step-by-Step (code)
Iteration (e.g. neural-like layered blocks)
Iterative reasoning via graphs
- 2023-08: Graph of Thoughts: Solving Elaborate Problems with Large Language Models
- 2024-09: On the Diagram of Thought: Iterative reasoning as a directed acyclic graph (DAG)
Monte Carlo Tree Search (MCTS)
- 2024-05: AlphaMath Almost Zero: process Supervision without process
- 2024-06: ReST-MCTS*: LLM Self-Training via Process Reward Guided Tree Search
- 2024-06: Improve Mathematical Reasoning in Language Models by Automated Process Supervision
- 2024-06: Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B
- 2024-07: Tree Search for Language Model Agents
- 2024-10: Interpretable Contrastive Monte Carlo Tree Search Reasoning
Other Search
Scaling
- 2021-04: Scaling Scaling Laws with Board Games
- 2024-03: Are More LLM Calls All You Need? Towards Scaling Laws of Compound Inference Systems
- 2024-04: The Larger the Better? Improved LLM Code-Generation via Budget Reallocation
- 2024-07: Large Language Monkeys: Scaling Inference Compute with Repeated Sampling
- 2024-08: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models
- 2024-08: Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
- 2024-10: (comparing fine-tuning to in-context learning) Is In-Context Learning Sufficient for Instruction Following in LLMs?
Theory
Expending compute works
- 2024-06-10: Blog post (opinion): AI Search: The Bitter-er Lesson
- 2024-07-17: Blog post (test): Getting 50% (SoTA) on ARC-AGI with GPT-4o
- 2024-09-12: OpenAI o1: Learning to Reason with LLMs
- 2024-09-16: Scaling: The State of Play in AI
Code for Inference-time Compute
- optillm: Inference proxy which implements state-of-the-art techniques to improve accuracy and performance of LLMs (improve reasoning over coding, logical and mathematical queries)
Memory
Tool Use
- 2024-11: DynaSaur: Large Language Agents Beyond Predefined Actions: writes functions/code to increase capabilities
Multi-agent Effort (and Emergent Intelligence)
- 2024-10: Model Swarms: Collaborative Search to Adapt LLM Experts via Swarm Intelligence
- 2024-10: Agent-as-a-Judge: Evaluate Agents with Agents
- 2024-11: Project Sid: Many-agent simulations toward AI civilization
ML-like Optimization of LLM Setup
- 2023-03: DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines (code: Programming—not prompting—Foundation Models)
- 2024-05: Automatic Prompt Optimization with "Gradient Descent" and Beam Search
- 2024-06: TextGrad: Automatic "Differentiation" via Text (gradient backpropagation through text)
- 2024-06: Symbolic Learning Enables Self-Evolving Agents (optimize LLM frameworks)
Multi-agent orchestration
Research demos
- Camel
- LoopGPT
- JARVIS
- OpenAGI
- AutoGen
- preprint: AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation
- Agent-E: Browser (eventually computer) automation (code, preprint, demo video)
- AutoGen Studio: GUI for agent workflows (code)
- Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks
- AG2 (previously AutoGen) (code, docs, Discord)
- TaskWeaver
- MetaGPT
- AutoGPT (code); and AutoGPT Platform
- Optima
- 2024-04: LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models (code)
- 2024-06: MASAI: Modular Architecture for Software-engineering AI Agents
- 2024-10: Agent S: An Open Agentic Framework that Uses Computers Like a Human (code)
Related work
Inter-agent communications
- 2024-10: Agora: A Scalable Communication Protocol for Networks of Large Language Models (preprint): disparate agents auto-negotiate communication protocol
- 2024-11: DroidSpeak: Enhancing Cross-LLM Communication: Exploits caches of embeddings and key-values, to allow context to be more easily transferred between AIs (without consuming context window)
Architectures
Open Source Frameworks
- LangChain
- ell (code, docs)
- AgentOps AI AgentStack
- Agent UI
- kyegomez swarms
- OpenAI Swarm (cookbook)
- Amazon AWS Multi-Agent Orchestrator
- KaibanJS: Kanban for AI Agents? (Takes inspiration from Kanban visual work management.)
Open Source Systems
- ControlFlow
- OpenHands (formerly OpenDevin)
- code: platform for autonomous software engineers, powered by AI and LLMs
- Report: OpenDevin: An Open Platform for AI Software Developers as Generalist Agents
Commercial Automation Frameworks
- Lutra: Automation and integration with various web systems.
- Gumloop
- TextQL: Enterprise Virtual Data Analyst
- Athena intelligence: Analytics platform
- Nexus GPT: Business co-pilot
- Multi-On: AI agent that acts on your behalf
- Firecrawl: Turn websites into LLM-ready data
- Reworkd: End-to-end data extraction
- Lindy: Custom AI Assistants to automate business workflows
- E.g. use Slack
- Bardeen: Automate workflows
- Abacus: AI Agents
- LlamaIndex: (𝕏, code, docs, Discord)
- MultiOn AI: Agent Q (paper) automated planning and execution
Spreadsheet
Cloud solutions
- Numbers Station Meadow: agentic framework for data workflows (code).
- CrewAI says they provide multi-agent automations (code).
- LangChain introduced LangGraph to help build agents, and LangGraph Cloud as a service for running those agents.
- LangGraph Studio is an IDE for agent workflows
- C3 AI enterprise platform
- Deepset AI Haystack (docs, code)
Frameworks
- Google Project Oscar
- Agent: Gaby (for "Go AI bot") (code, documentation) helps with issue tracking.
- OpenPlexity-Pages: Data-aggregator implementation (like Perplexity) based on CrewAI
Optimization
Metrics, Benchmarks
- 2022-06: PlanBench: An Extensible Benchmark for Evaluating Large Language Models on Planning and Reasoning about Change
- 2024-04: AutoRace (code): LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models
- 2024-04: OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments (github)
- 2024-07: AI Agents That Matter
- 2024-09: CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark (leaderboard)
- 2024-09: LLMs Still Can't Plan; Can LRMs? A Preliminary Evaluation of OpenAI's o1 on PlanBench
- 2024-09: On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability
- 2024-10: MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering
- 2024-10: WorFBench: Benchmarking Agentic Workflow Generation
- 2024-10: VibeCheck: Discover and Quantify Qualitative Differences in Large Language Models
- 2024-10: SimpleAQ: Measuring short-form factuality in large language models (announcement, code)
- 2024-11: RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts (blog, code)
Agent Challenges
- Aidan-Bench: Test creativity by having a particular LLM generate long sequence of outputs (meant to be different), and measuring how long it can go before duplications appear.
- Pictionary: LLM suggests prompt, multiple LLMs generate outputs, LLM judges; allows raking of the generation abilities.
- MC-bench: Request LLMs to build an elaborate structure in Minecraft; outputs can be A/B tested by human judges.
Automated Improvement
- 2024-06: EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms
- 2024-06: Symbolic Learning Enables Self-Evolving Agents
- 2024-08: Automated Design of Agentic Systems (ADAS code)
- 2024-08: Self-Taught Evaluators: Iterative self-improvement through generation of synthetic data and evaluation