Talk:Polarization correction
From GISAXS
Jump to:
navigation
,
search
Angle
Adjacent
Opposite
Hypotenuse
Sine = O/H
Cosine = A/H
Tangent = O/A
χ
{\displaystyle \chi }
Azimuth on detector
(relative to
q
z
{\displaystyle q_{z}}
axis)
z
{\displaystyle z}
x
{\displaystyle x}
r
=
x
2
+
z
2
{\displaystyle r={\sqrt {x^{2}+z^{2}}}}
sin
χ
=
x
r
{\displaystyle \sin \chi ={\frac {x}{r}}}
cos
χ
=
z
r
{\displaystyle \cos \chi ={\frac {z}{r}}}
tan
χ
=
x
z
{\displaystyle \tan \chi ={\frac {x}{z}}}
2
θ
{\displaystyle 2\theta }
Full scattering angle
(between incident beam and scattering)
y
{\displaystyle y}
r
=
x
2
+
z
2
{\displaystyle r={\sqrt {x^{2}+z^{2}}}}
R
=
x
2
+
y
2
+
z
2
{\displaystyle R={\sqrt {x^{2}+y^{2}+z^{2}}}}
sin
2
θ
=
r
R
{\displaystyle \sin 2\theta ={\frac {r}{R}}}
cos
2
θ
=
y
R
{\displaystyle \cos 2\theta ={\frac {y}{R}}}
tan
2
θ
=
r
y
{\displaystyle \tan 2\theta ={\frac {r}{y}}}
γ
{\displaystyle \gamma }
In-plane angle
y
{\displaystyle y}
x
{\displaystyle x}
h
=
x
2
+
y
2
{\displaystyle h={\sqrt {x^{2}+y^{2}}}}
sin
γ
=
x
h
{\displaystyle \sin \gamma ={\frac {x}{h}}}
cos
γ
=
y
h
{\displaystyle \cos \gamma ={\frac {y}{h}}}
tan
γ
=
x
y
{\displaystyle \tan \gamma ={\frac {x}{y}}}
δ
{\displaystyle \delta }
Elevation angle
h
=
x
2
+
y
2
{\displaystyle h={\sqrt {x^{2}+y^{2}}}}
z
{\displaystyle z}
R
=
x
2
+
y
2
+
z
2
{\displaystyle R={\sqrt {x^{2}+y^{2}+z^{2}}}}
sin
δ
=
z
R
{\displaystyle \sin \delta ={\frac {z}{R}}}
cos
δ
=
h
R
{\displaystyle \cos \delta ={\frac {h}{R}}}
tan
δ
=
z
h
{\displaystyle \tan \delta ={\frac {z}{h}}}
So:
tan
γ
=
x
y
=
r
sin
χ
r
/
tan
2
θ
=
tan
2
θ
sin
χ
γ
=
tan
−
1
[
tan
2
θ
sin
χ
]
{\displaystyle {\begin{alignedat}{2}\tan \gamma &={\frac {x}{y}}\\&={\frac {r\sin \chi }{r/\tan 2\theta }}\\&=\tan 2\theta \sin \chi \\\gamma &=\tan ^{-1}\left[\tan 2\theta \sin \chi \right]\end{alignedat}}}
and:
sin
δ
=
z
R
=
r
cos
χ
r
/
sin
2
θ
=
sin
2
θ
cos
χ
δ
=
sin
−
1
[
sin
2
θ
cos
χ
]
{\displaystyle {\begin{alignedat}{2}\sin \delta &={\frac {z}{R}}\\&={\frac {r\cos \chi }{r/\sin 2\theta }}\\&=\sin 2\theta \cos \chi \\\delta &=\sin ^{-1}\left[\sin 2\theta \cos \chi \right]\end{alignedat}}}
and so:
P
h
=
1
−
cos
2
δ
sin
2
γ
=
1
−
(
1
−
[
sin
2
θ
cos
χ
]
2
)
[
tan
2
θ
sin
χ
]
2
[
tan
2
θ
sin
χ
]
2
+
1
=
1
−
sin
2
(
2
θ
)
sin
2
(
χ
)
{\displaystyle {\begin{alignedat}{2}P_{h}&=1-\cos ^{2}\delta \sin ^{2}\gamma \\&=1-\left(1-\left[\sin 2\theta \cos \chi \right]^{2}\right){\frac {\left[\tan 2\theta \sin \chi \right]^{2}}{\left[\tan 2\theta \sin \chi \right]^{2}+1}}\\&=1-\sin ^{2}(2\theta )\sin ^{2}(\chi )\end{alignedat}}}
Navigation menu
Personal tools
Log in
Namespaces
Page
Discussion
Variants
Views
Read
View source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Permanent link
Page information