Difference between revisions of "Example:Particle spacing from peak position"

From GISAXS
Jump to: navigation, search
(Created page with "Consider a cubic unit cell (SC, Lattice:BCC, Lattice:FCC). Note that in general: :<math> \begin{alignat}{2} \left( \frac{1}{d_{hkl}} \right )^2 = \left(\frac{h}{a}\rig...")
 
(See Also)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Consider a cubic unit cell (SC, [[Lattice:BCC]], [[Lattice:FCC]]). Note that in general:
+
Consider the case of trying to measure the particle-particle spacing from the ''q''-value of a particular peak. The interpretation of the ''q'' value of course depends upon the packing of the particles; i.e. the [[unit cell]]. Consider a cubic unit cell ([[Lattice:SC|SC]], [[Lattice:BCC|BCC]], [[Lattice:FCC|FCC]]). Note that in general:
 
:<math>
 
:<math>
 
\begin{alignat}{2}
 
\begin{alignat}{2}
Line 13: Line 13:
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 +
 +
===BCC 110===
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{110}
 +
  & = \frac{a}{\sqrt{ 1^2 + 1^2 + 0^2 }} \\
 +
  & = \frac{a}{\sqrt{ 2 }}
 +
\end{alignat}
 +
</math>
 +
[[Lattice:BCC|Note that for BCC]], the particle-particle distance is given by:
 +
:<math>d_{nn} = \sqrt{3}a /2</math>
 +
So we expect:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{nn}
 +
  & = \frac{ \sqrt{3}a }{2} \\
 +
  & = \frac{ \sqrt{3} d_{110} \sqrt{2} }{2} \\
 +
  & = \frac{ \sqrt{6} d_{110}  }{2} \\
 +
  & = \frac{ \sqrt{6} (2 \pi / q_{110} ) }{2} \\
 +
  & = \frac{ \pi \sqrt{6}  }{q_{110}} \\
 +
\end{alignat}
 +
</math>
 +
Of course, we could also have written:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{110}
 +
  & = \frac{a}{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} / \sqrt{3} }{\sqrt{ 2 }} \\
 +
  & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
 +
\end{alignat}
 +
</math>
 +
 +
===FCC 111===
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{111}
 +
  & = \frac{a}{\sqrt{ 1^2 + 1^2 + 1^2 }} \\
 +
  & = \frac{a}{\sqrt{ 3 }}
 +
\end{alignat}
 +
</math>
 +
And:
 +
:<math>d_{nn}=\sqrt{2}a/2</math>
 +
So:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{nn}
 +
  & = \frac{ \sqrt{2}a }{2} \\
 +
  & = \frac{ \sqrt{2} d_{111} \sqrt{3} }{2} \\
 +
  & = \frac{ \sqrt{6} d_{111} }{2} \\
 +
  & = \frac{ \pi \sqrt{6} }{q_{111}} \\
 +
\end{alignat}
 +
</math>
 +
Or:
 +
:<math>
 +
\begin{alignat}{2}
 +
d_{111}
 +
  & = \frac{a}{\sqrt{ 3 }} \\
 +
  & = \frac{ 2 d_{nn} / \sqrt{2} }{\sqrt{ 3 }} \\
 +
  & = \frac{ 2 d_{nn} }{\sqrt{ 6 }} \\
 +
\end{alignat}
 +
</math>
 +
 +
===Comparison===
 +
Notice that the BCC 110 and FCC 111 have the same 'conversion factor' from ''q''-position into particle-particle distance. Thus, even without knowing which unit cell the particles are packing into, one can perform the conversion, provided one is confident about the peak being either the BCC 110 or the FCC 111.
 +
 +
==See Also==
 +
* Weidman, M.C.; [[Yager, K.G.]], Tisdale, W.A. [http://pubs.acs.org/doi/abs/10.1021/cm503626s Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange] ''Chemistry of Materials'' '''2015''' [http://dx.doi.org/10.1021/cm503626s doi: 10.1021/cm503626s]

Latest revision as of 10:45, 1 December 2014

Consider the case of trying to measure the particle-particle spacing from the q-value of a particular peak. The interpretation of the q value of course depends upon the packing of the particles; i.e. the unit cell. Consider a cubic unit cell (SC, BCC, FCC). Note that in general:

Since , and since , the realspace spacing of planes is:

BCC 110

Note that for BCC, the particle-particle distance is given by:

So we expect:

Of course, we could also have written:

FCC 111

And:

So:

Or:

Comparison

Notice that the BCC 110 and FCC 111 have the same 'conversion factor' from q-position into particle-particle distance. Thus, even without knowing which unit cell the particles are packing into, one can perform the conversion, provided one is confident about the peak being either the BCC 110 or the FCC 111.

See Also