Difference between revisions of "Peak shape"

From GISAXS
Jump to: navigation, search
(Created page with "right|300px The peak width observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. M...")
 
 
(15 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
The [[peak width]] observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.
 
The [[peak width]] observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.
  
Note also that instrumental resolution contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material grain size, plus a Lorentzian, representing instrumental resolution).
+
One interpretation of peak shape is that encodes the average grain ''shape''. That is, the peak shape function is the [[Fourier transform]] of the grain shape. Specific examples:
 +
* Gaussian peak in [[reciprocal-space]] implies a Gaussian-like decorrelation in [[realspace]] (i.e. that the ''average'' of grains/correlation-volumes decays with a Gaussian profile).
 +
* Lorentzian peak in reciprocal-space implies an exponential decorrelation in realspace.
 +
* Sinc function in reciprocal-space implies a top-hat function in realspace (sharp domain boundaries, with little to no variation in size of domains).
 +
 
 +
Note also that [[instrumental resolution]] contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material [[grain size]], plus a Lorentzian, representing instrumental resolution).
 +
 
 +
==Generalized Peak Shape==
 +
A generalized peak shape can be computed using:
 +
:<math>
 +
\begin{alignat}{2}
 +
 
 +
L_{hkl}(q) & = \frac{2}{\pi\delta} \prod_{n=0}^{\infty}{\left( 1 + \frac{\gamma_{\nu}^2}{(n+\nu/2)^2} \frac{4 q_s^2}{\pi^2\delta^2} \right)^{-1}} \\
 +
 
 +
& = \frac{2}{\pi\delta} \left| \frac{ \Gamma\left[\nu/2 + i\gamma_{\nu}(4q_s^2/\pi^2\delta^2)^2\right] }{ \Gamma\left[\nu/2\right] } \right|^2
 +
 
 +
\end{alignat}
 +
</math>
 +
Where <math>q_s=(q-q_{hkl})</math>, <math>\delta</math> describes the peak width, and <math>\nu</math> describes the peak shape. The parameter <math>\gamma_{\nu}</math> is a ratio of [http://en.wikipedia.org/wiki/Gamma_function gamma functions]:
 +
::<math>
 +
\gamma_{\nu} = \sqrt{\pi}\frac{\Gamma\left[  (\nu+1)/2  \right]}{\Gamma\left[  \nu+/2  \right]}
 +
</math>
 +
 
 +
The limiting cases for peak shape are:
 +
 
 +
:<math>
 +
L_{hkl}(q_s) = \left\{
 +
   
 +
    \begin{array}{c l l}
 +
        \frac{\delta/2\pi}{q_s^2+(\delta/2)^2}
 +
        & \mathrm{for} \,\, \nu\to0
 +
        & \mathrm{(Lorentzian)} \\
 +
        \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2}  \right]
 +
        & \mathrm{for} \,\, \nu\to\infty
 +
        & \mathrm{(Gaussian)} \\
 +
    \end{array}
 +
   
 +
\right.
 +
</math>
 +
 
 +
Thus the parameter <math>\nu</math> allows one to vary continuously between a [http://en.wikipedia.org/wiki/Lorentzian_function Lorentzian] peak shape and a [http://en.wikipedia.org/wiki/Gaussian_function Gaussian] peak shape. Note that for Lorentzian, <math>\delta</math> describes the full-width at half-maximum (FWHM):
 +
::<math> \delta_{\mathrm{lorentz}} = \mathrm{fwhm_{\mathrm{lorentz}}} </math>
 +
The Gaussian form can be written a few different ways:
 +
:<math>
 +
\begin{alignat}{2}
 +
 
 +
L_{hkl,\mathrm{gauss}}(q_s) & = \frac{2}{\pi\delta}\exp\left[ -\frac{4q_s^2}{\pi\delta^2}  \right] \\
 +
& = \frac{1}{\sqrt{2\pi}\sigma}\exp\left[ -\frac{q_s^2}{2\sigma^2}  \right] \\
 +
& = \sqrt{\frac{\ln{2}}{\pi}}\frac{1}{\mathrm{fwhm}} \exp\left[ -\frac{4 \ln{2} q_s^2}{\mathrm{fwhm}^2}  \right] \\
 +
 
 +
\end{alignat}
 +
</math>
 +
where the width is described by:
 +
:: <math>\delta_{\mathrm{gauss}} = \sqrt{\frac{8}{\pi}}\sigma_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{\sqrt{\pi\ln{2} }}</math>
 +
:: <math>\sigma_{\mathrm{gauss}} = \sqrt{\frac{\pi}{8}}\delta_{\mathrm{gauss}} = \frac{\mathrm{fwhm}_{\mathrm{gauss}}}{2\sqrt{2 \ln{2} }}</math>
 +
:: <math>\mathrm{fwhm}_{\mathrm{gauss}} = 2\sqrt{2 \ln{2} } \sigma_{\mathrm{gauss}} = \sqrt{\pi\ln{2} } \delta_{\mathrm{gauss}}</math>
 +
 
 +
And note that <math> 2\sqrt{2 \ln{2} } \approx </math> 2.35482004503...
 +
 
 +
===Source===
 +
* [http://pubs.acs.org/doi/abs/10.1021/jp0467494 Scattering Curves of Ordered Mesoscopic Materials] S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer, S.S. Funari, P. Mulvaney, R. Knott, J. Phys. Chem. B, 2005, 109 (4), pp 1347–1360 [http://dx.doi.org/10.1021/jp0467494 DOI: 10.1021/jp0467494]
  
 
==Literature Examples==
 
==Literature Examples==
TBD
+
===Warren/Averbach [[paracrystal]]===
 +
* B. E. Warren, [http://www.sciencedirect.com/science/article/pii/0502820559900152 X-RAY STUDIES OF DEFORMED METALS] ''Progress in Metal Physics'' '''1959''', 8, 174-202 [http://dx.doi.org/10.1016/0502-8205(59)90015-2 doi: 10.1016/0502-8205(59)90015-2]
 +
* B.E. Warren, B.L. Averbach, [http://scitation.aip.org/content/aip/journal/jap/21/6/10.1063/1.1699713?ver=pdfcov The Effect of Cold‐Work Distortion on X‐Ray Patterns] ''J. Appl. Phys.'' '''1950''', 21, 595 [http://dx.doi.org/10.1063/1.1699713 doi: 10.1063/1.1699713]
 +
* B.E. Warren, B.L. Averbach, [http://scitation.aip.org/content/aip/journal/jap/23/4/10.1063/1.1702234?ver=pdfcov The Separation of Cold‐Work Distortion and Particle Size Broadening in X‐Ray Patterns] ''J. Appl. Phys.'' '''1952''', 23, 497 [http://dx.doi.org/10.1063/1.1702234 doi: 10.1063/1.1702234]
 +
* B. Crist and J.B. Cohen [http://onlinelibrary.wiley.com/doi/10.1002/pol.1979.180170609/abstract Fourier Analysis of Polymer X-Ray Diffraction Patterns] ''J. Poly. Sci: Poly. Phys.'' '''1979''', 17 (6), 1001-1010 [http://dx.doi.org/10.1002/pol.1979.180170609 doi: 10.1002/pol.1979.180170609]
 +
* T.J. Prosa , J. Moulton , A.J. Heeger, and M.J. Winokur, [http://pubs.acs.org/doi/abs/10.1021/ma981059h Diffraction Line-Shape Analysis of Poly(3-dodecylthiophene):  A Study of Layer Disorder through the Liquid Crystalline Polymer Transition] ''Macromolecules'' '''1999''', 32 (12), 4000-4009 [http://dx.doi.org/10.1021/ma981059h doi: 10.1021/ma981059h]
 +
* Rodrigo Noriega, Jonathan Rivnay, Koen Vandewal, Felix P. V. Koch, Natalie Stingelin, Paul Smith, Michael F. Toney & Alberto Salleo, [http://www.nature.com/nmat/journal/v12/n11/full/nmat3722.html#supplementary-information A general relationship between disorder, aggregation and charge transport in conjugated polymers] ''Nature Materials'' '''2013''', 12, 1038-1044 [http://dx.doi.org/10.1038/nmat3722 doi: 10.1038/nmat3722]; see also [http://www.nature.com/nmat/journal/v12/n11/extref/nmat3722-s1.pdf Supplementary Information].
 +
* Rodrigo Noriega, Jonatahan Rivnay, Alberto Salleo, Michael Toney [http://www-ssrl.slac.stanford.edu/conferences/workshops/srxas-2012/documents/rodrigonoriega-srxas2012.pdf Warren Averbach analysis of XRD peak shapes: Measuring disorder in soft organic materials]
 +
 
 +
===Williamson/Hall===
 +
* G.K. Williamson, W.H. Hall, [http://www.sciencedirect.com/science/article/pii/0001616053900066 X-ray line broadening from filed aluminium and wolfram] ''Acta Metallurgica'' '''1953''', 1 (1), 22-31.
 +
 
 +
===Grain Size Distribution===
 +
* E.F. Bertaut [http://scripts.iucr.org/cgi-bin/paper?S0365110X50000045 Raies de Debye-Scherrer et repartition des dimensions des domaines de Bragg dans les poudres polycristallines] ''Acta Cryst.'' '''1950''', 3, 14-18 [http://dx.doi.org/10.1107/S0365110X50000045 doi: 10.1107/S0365110X50000045]
 +
* S. Rao and C. R. Houska, [http://scripts.iucr.org/cgi-bin/paper?a25313 X-ray particle-size broadening] ''Acta Cryst.'' ''1986''', A42, 6-13 [http://dx.doi.org/10.1107/S0108767386099981 doi: 10.1107/S0108767386099981]
 +
* J. I. Langford, D. Louër and P. Scardi, [http://journals.iucr.org/j/issues/2000/03/02/th0047/index.html Effect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fitting] [http://dx.doi.org/10.1107/S002188980000460X doi: 10.1107/S002188980000460X]
 +
* T. Ungár, J. Gubicza, G. Ribárik and A. Borbély, [http://scripts.iucr.org/cgi-bin/paper?zm0085 Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals] ''J. Appl. Cryst.'' '''2001''', 34, 298-310 [http://dx.doi.org/10.1107/S0021889801003715 doi: 10.1107/S0021889801003715]
 +
====Fourier Analysis====
 +
* C.E. Kril and R. Birringer, [http://www.tandfonline.com/doi/abs/10.1080/01418619808224072#.VA3KbdbgX0M Estimating grain-size distributions in nanocrystalline materials from X-ray diffraction profile analysis] ''Philosophical Magazine A'' '''1998''', 77 (3), 621-640 [http://dx.doi.org/10.1080/01418619808224072 doi: 10.1080/01418619808224072]
 +
* J. Gubicza, J. Szépvölgyi, I. Mohai, L. Zsoldos, T Ungár, [http://www.sciencedirect.com/science/article/pii/S0921509399007029 Particle size distribution and dislocation density determined by high resolution X-ray diffraction in nanocrystalline silicon nitride powders] ''Materials Science and Engineering: A'' '''2000''', 280 (3), 263-269 [http://dx.doi.org/10.1016/S0921-5093(99)00702-9 doi: 10.1016/S0921-5093(99)00702-9]
 +
====Maximum Entropy====
 +
* N. Armstrong and W. Kalceff, [http://scripts.iucr.org/cgi-bin/paper?pii=S0021889899000692 A maximum entropy method for determining column-length distributions from size-broadened X-ray diffraction profiles] ''J. Appl. Cryst.'' '''1999''', 32, 600-613 [http://dx.doi.org/10.1107/S0021889899000692 doi: 10.1107/S0021889899000692]
 +
 
 +
===Other===
 +
* F.W. Jones, [http://rspa.royalsocietypublishing.org/content/166/924/16 The Measurement of Particle Size by the X-Ray Method] ''Proceedings of the Royal Society A'' '''1938''', 166 (924) 16-43 [http://dx.doi.org/10.1098/rspa.1938.0079 doi: 10.1098/rspa.1938.0079]
 +
* R.A. Young and D.B. Wiles, [http://scripts.iucr.org/cgi-bin/paper?a21811 Profile Shape Functions in Rietveld Refinements] ''J. Appl. Cryst.'' '''1982''', 15, 430-438 [http://dx.doi.org/10.1107/S002188988201231X doi: 10.1107/S002188988201231X]
 +
* R.J. Hill and C.J. Howard, [http://journals.iucr.org/j/issues/1985/03/00/issconts.html Peak shape variation in fixed-wavelength neutron powder diffraction and its effect on structural parameters obtained by Rietveld analysis] ''J. Appl. Cryst.'' '''1985''', 18, 173-180 [http://dx.doi.org/10.1107/S0021889885010068 doi: 10.1107/S0021889885010068]
 +
* D. Louer and J.I. Langford [http://scripts.iucr.org/cgi-bin/paper?S002188988800411X Peak Shape and Resolution in Conventional Diffractometry with Monochromatic X-rays] ''J. Appl. Cryst.'' '''1988''', 21, 430-437.
 +
* P. Scardi and M. Leoni [http://scripts.iucr.org/cgi-bin/paper?S0108767301021298 Whole powder pattern modelling] ''Acta Cryst.'' '''2002''', A58, 190-200. [http://dx.doi.org/10.1107/S0108767301021298 doi: 10.1107/S0108767301021298]
 +
* Gy. Zilahi, T. Ungár and G. Tichy [http://scripts.iucr.org/cgi-bin/paper?po5024 A common theory of line broadening and rocking curves] ''J. Appl. Cryst.'' '''2015''', 48. [http://dx.doi.org/10.1107/S1600576715001466 doi: 10.1107/S1600576715001466]
  
 
==See Also==
 
==See Also==
 +
* [http://prism.mit.edu/xray/oldsite/CrystalSizeAnalysis.ppt Estimating Crystallite Size Using XRD], Scott A. Speakman, MIT.
 
* [[Scherrer grain size analysis]]: Converting the peak width into a measure of the structural coherence length (grain size)
 
* [[Scherrer grain size analysis]]: Converting the peak width into a measure of the structural coherence length (grain size)
 +
* [[Ring graininess]]: Estimating grain size using the non-uniformity of the scattering ring. (Can be used to compute grain sizes even when the grains are so large that the peak width is instrumental-limited.)

Latest revision as of 09:15, 12 October 2016

Peak.png

The peak width observed in x-ray scattering can be related to the grain size of the ordered structure giving rise to the scattering peak. More generally, the peak shape also encodes information about the sample order. Thus, peak shape analysis can be used to extract higher-order information.

One interpretation of peak shape is that encodes the average grain shape. That is, the peak shape function is the Fourier transform of the grain shape. Specific examples:

  • Gaussian peak in reciprocal-space implies a Gaussian-like decorrelation in realspace (i.e. that the average of grains/correlation-volumes decays with a Gaussian profile).
  • Lorentzian peak in reciprocal-space implies an exponential decorrelation in realspace.
  • Sinc function in reciprocal-space implies a top-hat function in realspace (sharp domain boundaries, with little to no variation in size of domains).

Note also that instrumental resolution contributes to peak width, and also to peak shape. Scattering peaks are thus sometimes fit using functions that include two contributes (e.g. a Gaussian, representing material grain size, plus a Lorentzian, representing instrumental resolution).

Generalized Peak Shape

A generalized peak shape can be computed using:

Where , describes the peak width, and describes the peak shape. The parameter is a ratio of gamma functions:

The limiting cases for peak shape are:

Thus the parameter allows one to vary continuously between a Lorentzian peak shape and a Gaussian peak shape. Note that for Lorentzian, describes the full-width at half-maximum (FWHM):

The Gaussian form can be written a few different ways:

where the width is described by:

And note that 2.35482004503...

Source

Literature Examples

Warren/Averbach paracrystal

Williamson/Hall

Grain Size Distribution

Fourier Analysis

Maximum Entropy

Other

See Also