Difference between revisions of "PrA"

From GISAXS
Jump to: navigation, search
(Ellipse)
(Ellipse)
Line 65: Line 65:
 
\begin{alignat}{2}
 
\begin{alignat}{2}
 
a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\
 
a & = \frac{-(2-\mathrm{PRA}^2)\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4(1)(1)} }{2(1)} \\
   & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} \right)\\
+
   & = \frac{1}{2} \left( -2+\mathrm{PRA}^2\pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\
   & = \frac{1}{2} \left( \mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} -2 \right)\\
+
   & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{(2-\mathrm{PRA}^2)^2 - 4} \right)\\
   & = \frac{1}{2} \left( \mathrm{PRA}^2\pm \sqrt{(2+\mathrm{PRA}^2)^2 - 4} -2 \right)\\
+
   & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{4 -4\mathrm{PRA}^2 + \mathrm{PRA}^4 - 4} \right)\\
 +
  & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \sqrt{\mathrm{PRA}^4 - 4\mathrm{PRA}^2} \right)\\
 +
  & = \frac{1}{2} \left( \mathrm{PRA}^2-2 \pm \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\
 
\end{alignat}
 
\end{alignat}
 
</math>
 
</math>
 
Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch.
 
Since <math>a \to \infty</math> as <math>P \to \infty</math>, we select the positive branch.
 +
:<math>
 +
\begin{alignat}{2}
 +
a & = \frac{1}{2} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)\\
 +
a^2 & = \frac{1}{4} \left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2\\
 +
\end{alignat}
 +
</math>
 +
And so:
 +
:<math>
 +
\begin{alignat}{2}
 +
e & = \sqrt{1 - \frac{1}{a^2}} \\
 +
  & = \sqrt{1 - \frac{4}{\left( \mathrm{PRA}^2-2 + \mathrm{PRA} \sqrt{\mathrm{PRA}^2 - 4} \right)^2}} \\
 +
\end{alignat}
 +
</math>

Revision as of 17:37, 12 May 2022

PrA is a simple ad-hoc parameter to define the "non-circularity" or eccentricity of a 2D object. This quantity is simply:

Where is the object's perimeter, is its surface area, and is an effective size (radius), computed based on the corresponding circle of the same area:

This definition of PrA is convenient, since it provides a simple measure of eccentricity. In particular, for a circle one expects:

Since a circle has the minimal perimeter (for a given area), this is a limiting value of PrA:

And thus any non-circular object will have a larger PrA. An infinitely eccentric object would have .

Ellipse

If the object is an ellipse, with equation:

Then the width is and height (we assume ), the foci are for . The eccentricity is:

A circle has , while increasingly squashed ellipses have values of closer and closer to . The area of an ellipse is:

The perimeter is not analytic but can be approximated very roughly by:

Which yields:

One can establish a relationship between eccentricity and PrA by setting and considering :

In particular:

From the quadratic equation:

Since as , we select the positive branch.

And so: