Difference between revisions of "Talk:DWBA"

From GISAXS
Jump to: navigation, search
(Expansion)
(Breaking into components)
 
(8 intermediate revisions by the same user not shown)
Line 143: Line 143:
 
</math>
 
</math>
  
===TBD===
+
 
We take advantage of a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>:
+
 
 +
 
 +
===Equation===
 +
We take advantage of a more compact form using the notation <math>T_i = T(\alpha_i)</math> and <math>F_{+1} = F(+Q_{z1})</math>. The DWBA equation can thus be expanded as:
 +
 
 +
<math>
 +
\begin{align}
 +
I_d(q_{z}) & =  |
 +
      T_i T_f F_{+1}
 +
    + T_i R_f F_{-2}
 +
    + R_i T_f F_{+2}
 +
    + R_i R_f F_{-1}  | ^{2} \\
 +
 
 +
    & \begin{align}
 +
        = \,\, &  |T_i T_f|^2 | F_{+1} |^2 && + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* \\
 +
          & && + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^*  \\
 +
 
 +
          & + |T_i R_f|^2 | F_{-2} |^2 && + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\
 +
          & && + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2}  \\
 +
 
 +
          & + |R_i T_f|^2 | F_{+2} |^2 && + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\
 +
          & && + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2}  \\
 +
 
 +
          & + |R_i R_f|^2 | F_{-1} |^2 && + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\
 +
          & && + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^* + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^*  \\
 +
 
 +
        \end{align} \\
 +
 
 +
\end{align}
 +
</math>
 +
 
 +
===Simplification===
 +
We can rearrange to:
 +
 
 +
<math>
 +
\begin{align}
 +
I_d(q_{z}) = \, \, &  |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\
 +
 
 +
    & + |T_i|^2 T_f R_f^* F_{+1}F_{-2}^* + |T_i|^2T_f^*R_f F_{+1}^* F_{-2} \\
 +
 
 +
    & + T_i R_i^* |T_f|^2 F_{+1}F_{+2}^* + T_i^* R_i |T_f|^2 F_{+1}^* F_{+2} \\
 +
 
 +
    & + |R_i|^2 T_f R_f^* F_{-1}^* F_{+2} + |R_i|^2 T_f^* R_f F_{-1} F_{+2}^* \\
 +
 
 +
    & + T_i R_i^* |R_f|^2 F_{-1}^* F_{-2} + T_i^* R_i |R_f|^2 F_{-1}F_{-2}^*\\
 +
 
 +
    & + T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* \\
 +
    & + T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} \\
 +
    & +  T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} \\
 +
    & +  T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} \\
 +
 
 +
= \, \, &  |T_i T_f|^2 | F_{+1} |^2 + |T_i R_f|^2 | F_{-2} |^2 + |R_i T_f|^2 | F_{+2} |^2 + |R_i R_f|^2 | F_{-1} |^2 \\
 +
 
 +
    & + |T_i|^2 [ T_f R_f^* F_{+1}F_{-2}^* + T_f^*R_f F_{+1}^* F_{-2} ] \\
 +
 
 +
    & + |T_f|^2 [ T_i R_i^*  F_{+1}F_{+2}^* + T_i^* R_i F_{+1}^* F_{+2} ] \\
 +
 
 +
    & + |R_i|^2 [ T_f R_f^* F_{-1}^* F_{+2} + T_f^* R_f F_{-1} F_{+2}^* ] \\
 +
 
 +
    & + |R_f|^2 [ T_i R_i^*  F_{-1}^* F_{-2} + T_i^* R_i F_{-1}F_{-2}^* ]\\
 +
 
 +
    & + [ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* + T_i^* R_i T_f^* R_f F_{+1}^* F_{-1} ] \\
 +
    & + [ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} + T_i^* R_i T_f R_f^* F_{+2}^*F_{-2} ] \\
 +
 
 +
\end{align}
 +
</math>
 +
 
 +
We define <math>I_{+1}=|F_{+1}|^2</math>, and note that for any complex number <math>c</math>, it is true that <math>c+c^*=2 \mathrm{Re}[c]</math>. Thus:
 +
 
 +
<math>
 +
\begin{align}
 +
I_d(q_{z})
 +
= \, \, &  |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\
 +
 
 +
    & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] \\
 +
 
 +
    & + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^*  F_{+1}F_{+2}^* ] \\
 +
 
 +
    & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] \\
 +
 
 +
    & + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^*  F_{-1}^* F_{-2} ]\\
 +
 
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] \\
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\
 +
 
 +
= \, \, &  |T_i T_f|^2 I_{+1} + |T_i R_f|^2 I_{-2} + |R_i T_f|^2 | I_{+2} + |R_i R_f|^2 I_{-1} \\
 +
 
 +
    & + 2 |T_i|^2 \mathrm{Re}[ T_f R_f^* F_{+1}F_{-2}^* ] + 2 |T_f|^2 \mathrm{Re}[ T_i R_i^*  F_{+1}F_{+2}^* ] \\
 +
 
 +
    & + 2 |R_i|^2 \mathrm{Re}[ T_f R_f^* F_{-1}^* F_{+2} ] + 2 |R_f|^2 \mathrm{Re}[ T_i R_i^*  F_{-1}^* F_{-2} ]\\
 +
 
 +
    & + 2 \mathrm{Re}[ T_i R_i^* T_f R_f^* F_{+1} F_{-1}^* ] + 2 \mathrm{Re}[ T_i R_i^* T_f^* R_f F_{+2}^*F_{-2} ] \\
 +
\end{align}
 +
</math>
  
 
==Breaking into components==
 
==Breaking into components==
The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{Tc}(qz)</math> and reflected channel <math>I_{Rc}(qz)</math>:
+
The experimental data <math>I_d(q_z)</math> can be broken into contributions from the transmitted channel <math>I_{d,\mathrm{Tc}}(qz)</math> and reflected channel <math>I_{d,\mathrm{Rc}}(qz)</math>:
  
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
 
I_d(q_{z})  
 
I_d(q_{z})  
   & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{Tc}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{Rc}(q_z) \\
+
   & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(+Q_{z1}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(+Q_{z2}) \\
   & = |Tc|^2 I_{Tc}(q_z) + |Rc|^2 I_{Rc}(q_z) \\
+
  & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Tc}}) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{R}(q_z-\Delta q_{z,\mathrm{Rc}}) \\
 +
  & = [ | T_i T_f|^2 + |R_i R_f|^2 ] I_{d,\mathrm{Tc}}(q_z) + [ |T_i R_f|^2 + |R_i T_f|^2 ] I_{d,\mathrm{Rc}}(q_z) \\
 +
   & = |Tc|^2 I_{d,\mathrm{Tc}}(q_z) + |Rc|^2 I_{d,\mathrm{Rc}}(q_z) \\
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 161: Line 256:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
w
+
w (q_z)
   & = \frac{ I_{Tc}(q_z) }{ I_{Tc}(q_z) + I_{Rc}(q_z) }
+
   & = \frac{ I_{d,\mathrm{Tc}}(q_z) }{ I_{d,\mathrm{Tc}}(q_z) + I_{d,\mathrm{Rc}}(q_z) }
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 170: Line 265:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 ( I_{Rc}(q_z) ) \\
+
I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\
I_d(q_{z}) & = |Tc|^2 ( I_{Tc}(q_z) ) + |Rc|^2 \left ( \frac{ I_{Tc}(q_z) - w I_{Tc}(q_z) }{w}  \right ) \\
+
I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 \left ( \frac{ I_{d,\mathrm{Tc}}(q_z) - w I_{d,\mathrm{Tc}}(q_z) }{w}  \right ) \\
I_d(q_{z}) & = I_{Tc}(q_z) \times \left ( |Tc|^2  +  |Rc|^2 \frac{ 1}{w}  - |Rc|^2 \frac{w }{w}  \right ) \\
+
I_d(q_{z}) & = I_{d,\mathrm{Tc}}(q_z) \times \left ( |Tc|^2  +  |Rc|^2 \frac{ 1}{w}  - |Rc|^2 \frac{w }{w}  \right ) \\
I_{Tc}(q_z)  & = \frac{ I_d(q_{z}) }{  |Tc|^2  +  \frac{ |Rc|^2 }{w}  - |Rc|^2  } \\
+
I_{d,\mathrm{Tc}}(q_z)  & = \frac{ I_d(q_{z}) }{  |Tc|^2  +  \frac{ |Rc|^2 }{w}  - |Rc|^2  } \\
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 182: Line 277:
 
<math>
 
<math>
 
\begin{align}
 
\begin{align}
I_{Rc}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{Tc}(q_z) }{|Rc|^2}
+
I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) - |Tc|^2 I_{d,\mathrm{Tc}}(q_z) }{|Rc|^2} \\
 +
    & = \frac{ I_d(q_{z}) }{|Rc|^2} - \frac{|Tc|^2}{|Rc|^2} I_{d,\mathrm{Tc}}(q_z)
 +
\end{align}
 +
</math>
 +
 
 +
or:
 +
 
 +
<math>
 +
\begin{align}
 +
I_d(q_{z}) & = |Tc|^2 ( I_{d,\mathrm{Tc}}(q_z) ) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\
 +
    & = |Tc|^2 \left( \frac{w}{1-w}  I_{d,\mathrm{Rc}}(q_z) \right) + |Rc|^2 ( I_{d,\mathrm{Rc}}(q_z) ) \\
 +
I_{d,\mathrm{Rc}}(q_z) & = \frac{ I_d(q_{z}) }{|Tc|^2 \frac{w}{1-w} + |Rc|^2}
 
\end{align}
 
\end{align}
 
</math>
 
</math>

Latest revision as of 10:21, 5 April 2018

DWBA Equation in thin film

Using the notation for compactness, the DWBA equation inside a thin film can be written:

Expansion (incorrect)

WARNING: This incorrectly ignores the complex components.

Terms

If one expands the of the DWBA, one obtains 16 terms:

Equation

The equation can thus be expanded as:

Simplification

We can rearrange to:


We can rewrite in a more compact form using the notation and :

Expansion

Terms

If one expands the of the DWBA, one obtains 16 terms:




Equation

We take advantage of a more compact form using the notation and . The DWBA equation can thus be expanded as:

Simplification

We can rearrange to:

We define , and note that for any complex number , it is true that . Thus:

Breaking into components

The experimental data can be broken into contributions from the transmitted channel and reflected channel :

We define the ratio between the channels to be:

Such that one can compute the two components from:

and:


or: